高一下册数学章节知识重点解读2023.docx

上传人:1107088****qq.com 文档编号:92633932 上传时间:2023-06-09 格式:DOCX 页数:6 大小:41.42KB
返回 下载 相关 举报
高一下册数学章节知识重点解读2023.docx_第1页
第1页 / 共6页
高一下册数学章节知识重点解读2023.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《高一下册数学章节知识重点解读2023.docx》由会员分享,可在线阅读,更多相关《高一下册数学章节知识重点解读2023.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一下册数学章节知识重点解读2023高一下册数学章节知识点总结11.“包含”关系子集注意:有两种可能(1)A是B的一部分,(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(55,且55,则5=5)实例:设A=x|x2-1=0B=-1,1“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B任何一个集合是它本身的子集。AA真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)如果AB,BC,那么AC如果AB同时BA那

2、么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集。高一下册数学章节知识点总结21.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该

3、函数的定义域.9.原函数在区间-a,a上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论1

4、5.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“

5、综上,原不等式的解集是”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即ab0,a0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问

6、题?(数列是特殊函数,但其定义域中的值不是连续的。)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次

7、化低次)33.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.(3)点的平移公式:点

8、按向量平移到点,则.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。39.正弦定理时易忘比值还等于2R.高一下册数学章节知识点总结31.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义

9、域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零2.构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的

10、,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:表达式相同;定义域一致(两点必须同时具备)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f

11、(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C=P(x,y)|y=f(x),xA图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4

12、三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”给定一个集合A到B的映射,如果aA,bB.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做

13、元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,集合A、B及对应法则f是确定的;对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;对于映射f:AB来说,则应满足:()集合A中的每一个元素,在集合B中都有象,并且象是的;()集合A中不同的元素,在集合B中对应的象可以是同一个;()不要求集合B中的每一个元素在集合A中都有原象。常用的函数表示法及各自的优点:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观

14、察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数补充一:分段函数(参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(uM),u=g(x),(xA),则y=fg(x)=F(x),(xA)称为f、g的复合函数。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁