《高三数学关键必修四知识点整理2023.docx》由会员分享,可在线阅读,更多相关《高三数学关键必修四知识点整理2023.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高三数学关键必修四知识点整理2023高三数学必修四知识点整理1两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,dR,那么a+bi=c+dia=c,b=d。特殊地,a,bR时,a+bi=0a=0,b=0.复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。复数相等特别提醒:一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。解复数相等问题的方法步骤:(1)把给的复数化成复数的标准形式;(2)根据复数相等的充要条件解之。高三数学必修四知识点整理2复数的概念:
2、形如a+bi(a,bR)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。复数的表示:复数通常用字母z表示,即z=a+bi(a,bR),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。复数的几何意义:(1)复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、bR)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一
3、的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。复数的模:复数z=a+bi(a、bR)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=虚数单位i:(1)它的平方等于-1,即i2=-1;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1.复数模的性质:复数与实数、虚数、纯虚
4、数及0的关系:对于复数a+bi(a、bR),当且仅当b=0时,复数a+bi(a、bR)是实数a;当b0时,复数z=a+bi叫做虚数;当a=0且b0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。高三数学必修四知识点整理3a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证明。n=1时,a(1)=a+(1-1)r=a。成立。假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r
5、+r=a+(k+1)-1r.通项公式也成立。因此,由归纳法知,等差数列的通项公式是正确的。求和公式:S(n)=a(1)+a(2)+.+a(n)=a+(a+r)+.+a+(n-1)r=na+r1+2+.+(n-1)=na+n(n-1)r/2同样,可用归纳法证明求和公式。a(1)=a,a(n)为公比为r(r不等于0)的等比数列通项公式:a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n-1)=a(1)r(n-1)=ar(n-1).可用归纳法证明等比数列的通项公式。求和公式:S(n)=a(1)+a(2)+.+a(n)=a+ar+.+ar(n-1)=a1+r+.+r(n-1)r不等于1时,S(n)=a1-rn/1-rr=1时,S(n)=na.同样,可用归纳法证明求和公式。