《基于单片机的温度监控系统()-毕业论文.doc》由会员分享,可在线阅读,更多相关《基于单片机的温度监控系统()-毕业论文.doc(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、IV西南科技大学本科生毕业论文基于单片机的温度监控系统摘要:温度控制在各个行业运用广泛,在化工、冶金、医药、食品和实验室等众多领域里都有涉及。温度的高低直接影响到产品的质量及使用寿命,因此在实际应用中对温度都要求严格控制,对于温度的精确度和稳定性均有较高的要求。随着控制理论和电子技术的发展,工业控制器的适应能力增强和高度智能化正逐步成为现实。其中以单片机为核心对温度进行控制简单直接、精度高、控制灵活、成本低。本系统是以AT89S52单片机为主控制单元,并采用数字温度传感器DS18B20采集现场温度数据而设计的远程温度控制系统。该系统具有对监控对象温度的实时采集并显示;按键设置上、下限温度值;超
2、出设定温度范围,自动报警并能通过外部设备控制温度等功能。该系统结构新颖,电路简单,控制方便。关键词:单片机; DS18B20; 温度检测; 温度控制Temperature Monitoring System Based on Single-chip MicrocomputerAbstract:Temperature control is used widely in industry and chemical, metallurgy, medicine, food and laboratory, many areas are involved. the temperature of a dir
3、ect impact on the quality of the product and service life, so in actual usage is strictly control the temperature required for the accuracy and stability are higher. the theory and electronic control of technology and industrial control of the ability to enhance and highly intelligent is gradually b
4、ecoming a reality. one of a monolithic integrated circuits to control the temperature a straightforward, high precision, flexibility and control the costs were low.This system is mainly controlled by at89s52 monolithic integrated circuits, and the temperature sensors ds18b20 the digital data collect
5、ed from the design of a remote control system. the temperature of the system for monitoring the object of the collection and display the temperature of the real-time ; button sets the minimum temperature and is beyond the scope and ; set the alarm and to the peripheral devices under control the temp
6、erature and other features. The system structure and simple, and the control circuit for Key words:Microcontroller;TDS18B20;Tmeasure; Temperature control目 录第1章 绪 论11.1 概述11.2 温度测控技术的发展与现状11.2.1 定值开关控温法21.2.2 PID线性控温法31.2.3 智能温度控制法31.3 系统总体设计方案41.3.1 系统性能要求及特点41.3.2 系统硬件方案分析51.3.3 系统软件方案分析6第2章 系统元件简介
7、72.1 单片机简介72.1.1 单片机72.1.2 单片机的应用领域82.1.3 AT89S52简介92.2 DS18B20简介112.2.1 DS18B20的性能特点112.2.2 DS18B20产品的特点112.2.3 DS18B20引脚功能介绍及内部结构112.2.4 DS18B20测温原理142.3 中间继电器简介152.3.1 继电器定义152.3.2 结构及原理162.3.3 中间继电器的选型162.4 其它器件简介172.4.1 四位一体共阴数码管172.4.2 74HC573简介182.4.3 2N390420第3章 硬件设计233.1 系统总体结构233.2 主控模块器件选
8、型及设计233.2.1 单片机的选用233.2.2 主控模块设计243.2.3温度采集模块设计253.3 温度显示模块设计263.4 温度控制模块设计27第4章 软件设计284.1 总体控制284.2 DS18B20温度采集294.3 数码管显示294.3.1 温度转换命令子程序294.3.2 计算温度子程序304.3.3 显示温度子程序304.4 继电器控制31第5章 调 试325.1 硬件调试325.2 软件调试335.2.1 集成开发环境KEIL335.2.2 利用KEIL开发系统软件流程345.2.3 软件具体调试34结 论36致 谢37参考文献38附录140附录241西南科技大学本科
9、生毕业论文第1章 绪 论1.1 概述温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密的与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。在实际的生产实验环境下,由于系统内部与外界的热交换是难以控制的,其他热源的干扰也是无法精确计算的,因此温度量的变化往往受到不可预测的外界环境扰动的影响。为了使系统与外界的能量交换尽可能的符合人们的要求,就需要采取其他手段来达到这样一个绝热的目的,例如可以让目标系统外部环境的温
10、度与其内部温度同步变化。根据热力学第二定律,两个温度相同的系统之间是达到热平衡的,这样利用一个与目标系统温度同步的隔离层,就可以把目标系统与外界进行热隔离。另外,在大部分实际的环境中,增温要比降温方便得多。因此,对温度的控制精度要求比较高的情况下,是不允许出现过冲现象的,即不允许实际温度超过控制的目标温度。特别是隔热效果很好的环境,温度一旦出现过冲,将难以很快把温度降下来。这是因为很多应用中只有加热环节,而没有冷却的装置。同样道理,对于只有冷却没有加热环节的应用中,实际温度低于控制的目标温度,对控制效果的影响也是很大的。鉴于上述这些特点,高精度温度控制的难度比较大,而且不同的应用环境也需要不同
11、的控制策略。下面就简要的讨论一下温度测控技术的发展与现状。1.2 温度测控技术的发展与现状近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。温度测控技术包括温度测量技术和温度控制技术两个方面。在温度的测量技术中,接触式测温发展较早,这种测量方法的优点是:简单、可靠、低廉、测量精度较高,一般能够测得真实温度,但由于检测元件热惯性的影响,响应时间较长,对热容量小的物体难以实现精确的测量,并且该方法不适宜于对腐蚀性介质测温,不能用于超高温测量,难于测量运动物体的温度。另外的非
12、接触式测温方法是通过对辐射能量的检测来实现温度测量的方法,其优点是:不破坏被测温场,可以测量热容量小的物体,适于测量运动物体的温度,还可以测量区域的温度分布,响应速度较快。但也存在测量误差较大,仪表指示值一般仅代表物体表观温度,测温装置结构复杂,价格昂贵等缺点。因此,在实际的温度测量中,要根据具体的测量对象选择合适的测量方法,在满足测量精度要求的前提下尽量减少投入。温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制
13、,冶金工厂中燃烧炉中的温度控制等;恒值温度控制的目的是使被控对象的温度恒定在某一给定数值上,且要求其波动幅度(即稳态误差)不能超过某允许值。本文所讨论的基于单片机的温度控制系统就是要实现对温控箱的恒值温度控制要求,故以下仅对恒值温度控制进行讨论。从工业控制器的发展过程来看,温度控制技术大致可分以下几种:1.2.1 定值开关控温法所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热装置(或冷却装置)进行通断控制。若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。这种开关控温方法比
14、较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现。目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用。由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通电源,因而无法克服温度变化过程的滞后性,致使被控对象温度波动较大,控制精度低,完全不适用于高精度的温度控制。1.2.2 PID线性控温法这种控温方法是基于经典控制理论中的PID调节器控制原理,PID控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好、可靠性高等优点被广泛应用工业过程控制中,尤其适用于可建立精确数学模型的确定性控制系统。由于PID调节器模型中考虑了系统的误差
15、、误差变化及误差积累三个因素,因此,其控制性能大大地优越于定值开关控温。其具体控制电路可以采用模拟电路或计算机软件方法来实现PID调节功能。前者称为模拟PID控制器,后者称为数字PID控制器。其中数字PID控制器的参数可以在现场实现在线整定,因此具有较大的灵活性,可以得到较好的控制效果。采用这种方法实现的温度控制器,其控制品质的好坏主要取决于三个PID参数(比例值、积分值、微分值)。只要PID参数选取的正确,对于一个确定的受控系统来说,其控制精度是比较令人满意的。但是,它的不足也恰恰在于此,当对象特性一旦发生改变,三个控制参数也必须相应地跟着改变,否则其控制品质就难以得到保证。1.2.3 智能
16、温度控制法为了克服PID线性控温法的弱点,人们相继提出了一系列自动调整PID参数的方法,如PID参数的自学习,自整定等等。并通过将智能控制与PID控制相结合,从而实现温度的智能控制。智能控温法以神经网络和模糊数学为理论基础,并适当加以专家系统来实现智能化。其中应用较多的有模糊控制、神经网络控制以及专家系统等。尤其是模糊控温法在实际工程技术中得到了极为广泛的应用。目前已出现一种高精度模糊控制器,可以很好的模拟人的操作经验来改善控制性能,从理论上讲,可以完全消除稳态误差。所谓第三代智能温控仪表,就是指基于智能控温技术而研制的具有自适应PID算法的温度控制仪表。目前国内温控仪表的发展,相对国外而言在
17、性能方面还存在一定的差距,它们之间最大的差别主要还是在控制算法方面,具体表现为国内温控仪在全量程范围内温度控制精度比较低,自适应性较差。这种不足的原因是多方面造成的,如针对不同的被控对象,由于控制算法的不足而导致控制精度不稳定。1.3 系统总体设计方案本设计的温度测量及加热控制系统以 AT89S52 单片机为核心部件,外加温度采集电路、温度显示电路、加热控制电路和越限报警等电路。采用单总线型数字式的温度传感器 DS18B20,及行列式键盘和动态显示的方式,以容易控制的固态继电器作加热控制的开关器件。本作品既可以对当前温度进行实时显示又可以对温度进行控制,以使达到用户需要的温度,并使其恒定在这一
18、温度。人性化的行设计使设置温度简单快速,两位整数一位小数的显示方式具有更高的显示精度。建立在模糊控制理论上的控制算法,使控制精度完全能满足一般社会生产的要求。通过对系统软件和硬件设计的合理规划,发挥单片机自身集成众多系统级功能单元的优势,在不减少功能的前提下有效降低了硬件成本,系统操控简便。1.3.1 系统性能要求及特点(l)系统性能要求:运用DS18B20温度传感器对温度进行采集;运用LED显示温度;能把温度控制在一定范围内;模块化设计,安装拆卸简单,维修方便;系统可靠性高,不易出故障;尽量采用典型、通用的器件,一旦损坏,易于在市场上买到同样零部件进行替换。(2)系统特点:鉴于上述系统功能要
19、求以及智能仪表应具有的体积小、成本低、功能强、抗干扰并尽可能达到更高精度的要求。本系统在硬件设计方面具有如下特点:控制主板采用AT89S52作为核心芯片;作为与MCS-51系列兼容的单片机,无论在运算速度,还是在内部资源上均可胜任本系统的性能要求。运用DS18B20温度传感器对温度进行采集,运用LED显示温度。通过继电器来控制温度。整个系统遵循了冗余原则及以软代硬的原则,并尽可能选用典型、常用、易于替换的芯片和电路,为系统的开放性、标准化和模块化打下良好基础。系统扩展和配置在满足功能要求的基础上留有适当裕量,以利于扩充和修改。1.3.2 系统硬件方案分析目前,温度控制的硬件电路一般采用模拟电路
20、(Analog Circuit)和单片机(Microcontroller)两种形式。模拟控制电路的各控制环节一般由运算放大器、电压比较器、模拟集成电路以及电容、电阻等外围元器件组成。它的最大优点是系统响应速度快,能实现对系统的实时控制。根据计算机控制理论可知,数字控制系统的采样速率并非越快越好,它还取决于被控系统的响应特性。在本系统中,由于温度的变化是一个相对缓慢的过程,对温控系统的实时性要求不是很高,所以模拟电路的优势得不到体现。另外,模拟电路依靠元器件之间的电气关系来实现控制算法,很难实现复杂的控制算法。单片机是大规模集成电路技术发展的产物,属于第四代电子计算机。它是把中央处理单元CPU(
21、Central Professing Unit)、随机存取存储器RAM(Random Access Memory)、只读存储器ROM(Read Only Memory)、定时/计数器以及1/0(In Put/Out Put)输入输出接口电路等主要计算机部件都集成在一块集成电路芯片上的微型计算机,它的特点是:功能强大、运算速度快、体积小巧、价格低廉、稳定可靠、应用广泛。由此可见,采用单片机设计控制系统,不仅可以降低开发成本,精简系统结构,而且控制算法由软件实现,还可以提高系统的兼容性和可移植性。另外,随着微电子技术和半导体工业的不断创新和发展,片上系统SOC(System On Chip)得到了
22、十足的发展。一些厂家根据系统功能的复杂程度,将这种SOC芯片应用到先进的控制仪表中。SOC芯片通常含有一个微处理器核(CPU),同时,它还含有多个外围特殊功能模块和一定规模的存储器(RAM和ROM),并且这种片上系统一般具有用户自定义接口模块,使得其功能非常强大,适用领域也非常广。它不仅能满足复杂的系统性能的需要,而且还使整个系统的电路紧凑,硬件结构简化。从实现复杂系统功能和简化硬件结构的角度出发,SOC是实现温度控制系统的最佳选择,但目前市场上SOC的价格还比较昂贵,并且SOC的封装形式几乎都采用贴片式封装,不利于实验电路板的搭建。从降低成本,器件供货渠道充足的角度看,应用单片机实现温度控制
23、系统是比较经济实用的。目前,市面上的单片机不仅种类繁多,而且在性能方面也各有所长。AT89S52单片机是ATMEL公司出品的与MCS-51系列兼容的低电压、高性能Cross位单片机。本系统是以AT89S52为核心器件组成的控制系统。此外,在选取外围扩展芯片时,本着节约成本的原则,尽量选取典型的、易于扩展和替换的芯片及器件。1.3.3 系统软件方案分析目前,MCS-51单片机的开发主要用到两种语言:汇编语言和C语言。与汇编语言相比,C语言具有以下的特点:(l)具有结构化控制语句结构化控制语言的显著特点是代码和数据的分隔化,即程序的各个部分除了必要的信息交流外彼此独立。这种结构化方式可使程序层次清
24、晰,便于使用、维护及调试;(2)适用范围大和可移植性好同其他高级语言一样,C语言不依赖于特定的CPU,其源程序具有良好的可移植性。目前,主流的CPU和常见的MCU都有C编译器。加之集成开发环境KEIL编译生成的代码效率很高(仅比汇编语言生成的代码效率低10%-15%)。所以,本系统选择使用C语言开发。由于整个系统软件比较复杂,为了便于编写、调试、修改和增删,系统程序的编制适合采用模块化的程序结构,故要求整个控制系统软件由许多独立的小模块组成,它们之间通过软件接口连接,遵循模块内数据关系紧凑,模块间数据关系松散的原则,将各功能模块组织成模块化的软件结构。第2章 系统元件简介2.1 单片机简介2.
25、1.1 单片机单片机到底是什么呢?就是一个电脑,只不过是微型的,麻雀虽小,五脏俱全:它内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件,不同的是它的这些部件性能都相对我们的家用电脑弱很多,不过价钱也是低的,一般不超过10元,用它来做一些控制电器一类不是很复杂的工作足矣了。我们现在用的全自动滚筒洗衣机,排烟罩VCD等等的家电里面都可以看到它的身影。它主要是作为控制部分的核心部件。它是一种在线式实时控制计算机,在线式就是现场控制,需要的是有较强的抗干扰能力,较低的成本,这也是和离线式计算机的(比如家用PC)的主要区别。单片机是靠程序的,并且可以修改。通过不同的
26、程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板。但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别。只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性。由于单片机对成本是敏感的,所以目前占统治地位的软件还是最低级汇编语言,它是除了二进制机器码以上最低级的语言了,既然这么低级为什么还要用呢?很多高级的语言已经达到了可视化编程的水平为什么不用呢?原因很简单,就是单片
27、机没有家用计算机那样的CPU,也没有像硬盘那样的海量存储设备。一个可视化高级语言编写的小程序里面即使只有一个按钮,也会达到几十K的尺寸。对于家用PC的硬盘来讲没什么,可是对于单片机来讲是不能接受的。单片机在硬件资源方面的利用率必须很高才行,所以汇编虽然原始却还是在大量使用。一样的道理,如果把巨型计算机上的操作系统和应用软件拿到家用PC上来运行,家用PC的也是承受不了的。英特尔)生产的,89C51是这几年在我国非常流行的单片机,它是由美国ATMEL公司开发生产的,其内核兼容MCS-51单片机。2.1.2 单片机的应用领域目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导
28、弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录象机、摄象机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械了。因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域,大致可分如下几个范畴:(1)在智能仪器仪表上的应用片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪
29、表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。例如精密的测量设备(功率计,示波器,各种分析仪)。(2)在工业控制中的应用用单片机可以构成形式多样的控制系统、数据采集系统。例如工厂流水线的智能化管理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。(3)在家用电器中的应用可以这样说,现在的家用电器基本上都采用了单片机控制,从电饭褒、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备,五花八门,无所不
30、在。(4)在计算机网络和通信领域中的应用现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,现在的通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等。(5)单片机在医用设备领域中的应用单片机在医用设备中的用途亦相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。此外,单片机在工商,金融,科研、教育,国防航空航天等领域都有着十分广泛的用途。2.1.3 AT89S52简介DS18B20引脚图
31、如图2-1所示图2-1 DS18B20引脚图主要性能:l MCS-51单片机产品兼容l K字节在系统可编程Flash存储器l 1000次擦写周期l 全静态操作:0Hz33Hzl 三级加密程序存储器l 32个可编程I/O口线l 三个16位定时器/计数器l 八个中断源l 全双工UART串行通道l 低功耗空闲和掉电模式l 掉电后中断可唤醒l 看门狗定时器l 双数据指针l 掉电标识符功能特性描述:AT89S52是一种低功耗、高性能CMOS8位微控制器,片8kBytesISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、
32、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。AT89S52使用Atmel公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。AT89S52具有以下标准功能:8k字节Flash,256字节RAM,32位I/O口线,看
33、门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许 RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。AT89S52是一个低功耗,高性能CMOS8位单片机,AT89S52具有如下特点:40个引脚,8kBytes lash片内程序存储器,256bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中
34、断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断 系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。2.2 DS18B20简介2.2.1 DS18B20的性能特点DS18B20数字温度计是DALLAS公司半导体公司最新推出的一种单线改进型智能温度传感器。与传统的热敏电阻等测温度元件
35、相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现912位的数字读书方式。而且单总线器件,具有线路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。2.2.2 DS18B20产品的特点(1) 只要求一个端口即可实现通信。(2) 多个DS18B20可以并联在唯一的三线上,实现多点组网功能。(3) 实际应用中不需要外部任何元器件即可实现测温。(4) 测量温度范围在55。C到125。C之间。(5) 数字温度计的分辨率用户可以从9位到12位选择。(6) 内部有温度上、下限告警设置。(7) 不需要外部器件,零待机功耗。(8)
36、用户可以的非易失性温度报警设置。(9) 报警搜索命令识别并标志超过程序限定温度。(10) 可通过数据线供电,电压3-5V。(11) 正负极反接不会烧坏,只是不能正常工作2.2.3 DS18B20引脚功能介绍及内部结构DS18B20引脚如图2-2所示:图2-2 DS18B20引脚图DS18B20引脚功能如表2-1所示表格2-1DS18B20引脚功能序号名称引脚功能描述1GND地信号2DQ数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源。3VDD可选择的VDD引脚。当工作于寄生电源时,此引脚必须接地。DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结
37、构框图如图2-3所示:图2-3 DS18B20内部结构框图64位ROM的位结构如图2-3所示。开始8位是产品类型的编号;接着是每个器件的唯一序号,共有48位;最后是前面56位的CRC检验码,这也是多个DS18B20可以采用单线通信的原因。飞易失性温度报警器触发器TH和HL,可通过软件写入用户报警上下限数据。64位光刻ROM如表2-2所示表格2-2 64位光刻ROM8位检验CRC48位序列号8位工厂代码(10H)MSB LSB MSB LSB MSB LSBDS18B20温度传感器的内部储存器还包括一个高速暂存RAM和一个非易失性的可电擦除的PROM。高速暂存RAM的结构为9字节的存储器,表格2
38、-3所示。前2字节包含测得的温度信息。第3和第4字节的TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5字节为配置寄存器,其内容用于确定温度值的数字转换分辨率,DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。该字节各位的定义表格2-3所示,其中低5位一直为1;TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式,在DS18B20出厂时,该位被设置为0,用户不要改动;R1和R0决定温度的精度位数,即用来设置分辨率。表格2-3高速暂存RAM结构表格温度LSB1字节温度MSB2字节TH用户字节13字节TH用户字节TL用户字节24字节TL用户字节配置寄存器5字节保留
39、6字节保留7字节保留8字节CRC9字节DS18B20温度转换的时间比较长,而且设定的分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1.第9字节是前面所有8字节的CRC码,可用来检测数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度就以16位带符号扩展的二进制补码形式存储在高速暂存RAM的第1、2字节中。单片机可以通过单线接口读出该数据。读数据时,低位在先,高位在后。数据格式以0.0625/LSB形式表示。DS18B20温度与对应值对应表如表2-4所示表
40、格2-4DS18B20温度与表示值对应表温度/二进制表示十六进制表示温度/二进制表示十六进制表示+1250000 01111101 000007D0H00000 00000000 00000000H+850000 01010101 00000550H-0.51111 11111111 1000FFF8H+25.06250000 00011001 00010191H-10.1251111 11110101 1110FF5EH+10.1250000 00001010 001000A2H-25.0.6251111 11100110 1111FE5EH+0.50000 00000000 1000000
41、8H-551111 11001001 0000FC90H2.2.4 DS18B20测温原理用一个高温度系数的振荡器确定一个门周期,内部计数器在这个门周期内对一个低温度系数的振荡器的脉冲进行计数来得到温度值。计数器被预置到对应于-55的一个值。如果计数器在门周期结束前到达0,则温度寄存器(同样被预置到-55)的值增加,表明所测温度大于-55。同时,计数器被复位到一个值,这个值由斜坡式累加器电路确定,斜坡式累加器电路用来补偿感温振荡器的抛物线特性。然后计数器又开始计数直到0,如果门周期仍未结束,将重复这一过程。斜坡式累加器用来补偿感温振荡器的非线性,以期在测温时获得比较高的分辨力。这是通过改变计数
42、器对温度每增加一度所需计数的的值来实现的。因此,要想获得所需的分辨力,必须同时知道在给定温度下计数器的值和每一度的计数值。DS1820内部对此计算的结果可提供0.5的分辨力。温度以16bit带符号位扩展的二进制补码形式读出,表1给出了温度值和输出数据的关系。数据通过单线接口以串行方式传输。DS1820 测温范围-55+125,以0.5递增。如用于华氏温度,必须要用一个转换因子查找表。如图2-4所示,图中低温系数振荡器的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减去计数器1;高温度系数振荡器随温度变化其振荡频率明显改变,所产生的信号作为减去计数器2的脉冲输出图2-4DS18B20测
43、温原理图图2-4中还含有着计数门,当计数门打开时。DS18B20就对低温度系数振荡产生的时钟脉冲进行计数,进而完成温度测量。计数门的开启时间由高温度振荡器来决定,每次测量前,首先将-55所对应的一个基数分别减去计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55所对应的一个基数值。减法计数器1对温度系数振荡产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将被装入,并从新对低温度系数振荡器产生的脉冲信号进行计数。如此循环,直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值就是所测温度值。图六中斜率累加器用于补偿
44、和修正测温过程中的非线型性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直到温度寄存器达到被测温度值。2.3 中间继电器简介2.3.1 继电器定义中间继电器(intermediate relay):用于继电保护与自动控制系统中,以增加触点的数量及容量。它用于在控制电路中传递中间信号。中间继电器的结构和原理与交流接触器基本相同,与接触器的主要区别在于:接触器的主触头可以通过大电流,而中间继电器的触头只能通过小电流。所以,它只能用于控制电路中。 它一般是没有主触点的,因为过载能力比较小。所以它用的全部都是辅助触头,数量比较多。新国标对中间继电器的定义是K,老国标是KA。一般
45、是直流电源供电。少数使用交流供电。2.3.2 结构及原理DZ系列继电器为阀型电磁式继电器。线圈装在U形导磁体上,导磁体上面有一个活动的衔铁,导磁体两侧装有两排触点弹开。在非动作状态下触点弹片将衔铁向上托起,使衔铁与导磁体之间保持一定间隙。当气隙间的电磁力矩超过反作用力矩时,衔铁被吸向导磁体,同时衔铁压动触点弹片,使常闭触点断开常开触点闭合,完成继电器工作。当电磁力矩减小到一定值时,由于触点弹片的反作用力矩,而使触点与衔铁返回到初始位置,准备下次工作。本继电器的U导磁体采用双铁心结构,即在两个边柱上均可装设线圈。对于DZY、DZL和DZJ型只装一个线圈,而对于DZB,DZS,DZK型可根据需要在
46、另一个铁心上装以保持线圈或延时用阻尼片等。从而使线圈类型大不相同的继电器都通用一个导磁体。2.3.3 中间继电器的选型 继电器的选型主要考虑以下几个要素:1地理位置气候作用要素主要指海拔高度、环境温度、湿度、和电磁干扰等要素。考虑控制系统的普遍适用性,兼顾必须长年累月可靠运行的特殊性,装置关键部位必须选用具有高绝缘、强抗电性能的全密封型(金属罩密封或塑封型,金属罩密封产品优于塑封产品)中间继电器产品。因为只有全密封继电器才具有优良的长期耐受恶劣环境性能、良好的电接触稳定、可靠性和切换负载能力(不受外部气候环境影响)。2机械作用要素主要指振动、冲击、碰撞等应力作用要素。对控制系统主要考虑到抗地震
47、应力作用、抗机械应力作用能力,宜选用采用平衡衔铁机构的小型中间继电器。3激励线圈输入参量要素主要是指过激励、欠激励、低压激励与高压(220 V)输出隔离、温度变化影响、远距离有线激励、电磁干扰激励等参量要素,这些都是确保电力系统自动化装置可靠运行必须认真考虑的因素。按小型中间继电器所规定的激励量激励是确保它可靠、稳定工作的必要条件。4触点输出(换接电路)参量要素主要是指触点负载性质,如灯负载,容性负载,电机负载,电感器、接触器(继电器)线圈负载,阻性负载等;触点负载量值(开路电压量值、闭路电流量值),如低电平负载、干电路负载、小电流负载、大电流负载等。任何自动化设备都必须切实认定实际所需要的负载性质、负载量值的大小,选用合适的继电器产品尤为重要。继电器的失效或可靠不可靠,主要指触点能否完成所规定的切换电路功能。如切换的实际负载与所选用继电器规定的切换负载不一致,可靠性将无从谈起。2.4 其它器件简介2.4.1 四位一体共阴数