《2023年高一数学必修4同步练习:143正切函数的性质与图象.pdf》由会员分享,可在线阅读,更多相关《2023年高一数学必修4同步练习:143正切函数的性质与图象.pdf(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学必修 4同步练习:1-4-3正切函数的性质与图象(word 版可编辑修改)高一数学必修4 同步练习:1-4-3 正切函数的性质与图象(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修 4 同步练习:1-4-3 正切函数的性质与图象(word版可编辑修改))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉
2、快 业绩进步,以下为高一数学必修 4 同步练习:1-4-3 正切函数的性质与图象(word版可编辑修改)的全部内容。高一数学必修 4同步练习:1-4-3正切函数的性质与图象(word 版可编辑修改)143正切函数的性质与图象 一、选择题 1下列叙述正确的是()A函数ycosx在(0,)上是增函数 B函数ytanx在(0,)上是减函数 C函数ycosx在(0,)上是减函数 D函数ysinx在(0,)上是增函数 答案 C 2函数y3tan错误!的定义域是()A。错误!B。错误!C。错误!D。错误!答案 C 解析 要使函数有意义,则 2x错误!k错误!(kZ),则x错误!错误!(kZ)3函数ytan
3、x错误!是()A奇函数 布之前我们对文中内容进行仔细校对但是难免会有疏漏的地方但是任然希望高一数学必修同步练习正切函数的性质与的源泉前进的动力本文可编辑可修改如果觉得对您有帮助请收藏以便随时查阅最后祝您生活愉快业绩进步以下为高一版可编辑修改正切函数的性质与图象一选择题下列叙述正确的是函数在上是增函数函数在上是减函数函数在上是减函高一数学必修 4同步练习:1-4-3正切函数的性质与图象(word 版可编辑修改)B偶函数 C既是奇函数又是偶函数 D既不是奇函数又不是偶函数 答案 A 解析 定义域是错误!x|xk,kZ错误!。又f(x)tan(x)错误!错误!f(x),即函数ytanx错误!是奇函数
4、 4下列直线中,与函数ytan错误!的图象不相交的是()Ax错误!By错误!Cx错误!Dy错误!答案 C 解析 由 2x错误!k错误!得,x错误!错误!(kZ),令k0 得,x错误!。5下列不等式中,正确的是()Atan错误!tan错误!Btan25tan错误!布之前我们对文中内容进行仔细校对但是难免会有疏漏的地方但是任然希望高一数学必修同步练习正切函数的性质与的源泉前进的动力本文可编辑可修改如果觉得对您有帮助请收藏以便随时查阅最后祝您生活愉快业绩进步以下为高一版可编辑修改正切函数的性质与图象一选择题下列叙述正确的是函数在上是增函数函数在上是减函数函数在上是减函高一数学必修 4同步练习:1-4
5、-3正切函数的性质与图象(word 版可编辑修改)Ctan错误!tan错误!Dtan错误!tan错误!答案 D 解析 tan错误!tan错误!tan错误!;tan错误!tan错误!tan错误!,tan错误!tan错误!,tan错误!tan错误!tan错误!tan错误!,tan错误!tan错误!tan错误!tan错误!。又 tan错误!tan错误!,所以 tan错误!tan错误!,故选 D.6(20112012郑州高一检测)当错误!x错误!时,函数ytan|x的图象()A关于原点对称 B关于x轴对称 C关于y轴对称 D不是对称图形 答案 C 布之前我们对文中内容进行仔细校对但是难免会有疏漏的地方
6、但是任然希望高一数学必修同步练习正切函数的性质与的源泉前进的动力本文可编辑可修改如果觉得对您有帮助请收藏以便随时查阅最后祝您生活愉快业绩进步以下为高一版可编辑修改正切函数的性质与图象一选择题下列叙述正确的是函数在上是增函数函数在上是减函数函数在上是减函高一数学必修 4同步练习:1-4-3正切函数的性质与图象(word 版可编辑修改)7(20112012荆州高一检测)在区间(错误!,错误!)范围内,函数ytanx与函数ysinx的图象交点的个数为()A2 B3 C4 D5 答案 B 8函数ytan(sinx)的值域是()A 错误!,错误!B 错误!,错误!C tan1,tan1 D 1,1 答案
7、 C 9已知函数ytanx在错误!内是减函数,则()A01 B10 C1 D1 答案 B 解析 若使函数ytanx在错误!内是减函数,则有0,并且周期T错误!错误!错误!.则10.10函数f(x)tan错误!在一个周期内的图象是()布之前我们对文中内容进行仔细校对但是难免会有疏漏的地方但是任然希望高一数学必修同步练习正切函数的性质与的源泉前进的动力本文可编辑可修改如果觉得对您有帮助请收藏以便随时查阅最后祝您生活愉快业绩进步以下为高一版可编辑修改正切函数的性质与图象一选择题下列叙述正确的是函数在上是增函数函数在上是减函数函数在上是减函高一数学必修 4同步练习:1-4-3正切函数的性质与图象(wo
8、rd 版可编辑修改)答案 A 解析 f错误!tan错误!tan错误!错误!,则f(x)的图象过点错误!,排除选项 C,D;f错误!tan错误!tan0 0,则f(x)的图象过点错误!,排除选项 B.故选 A.二、填空题 11函数y错误!的定义域是_ 答案 错误!解析 要使函数有意义,自变量x的取值应满足 tanx错误!0,布之前我们对文中内容进行仔细校对但是难免会有疏漏的地方但是任然希望高一数学必修同步练习正切函数的性质与的源泉前进的动力本文可编辑可修改如果觉得对您有帮助请收藏以便随时查阅最后祝您生活愉快业绩进步以下为高一版可编辑修改正切函数的性质与图象一选择题下列叙述正确的是函数在上是增函数
9、函数在上是减函数函数在上是减函高一数学必修 4同步练习:1-4-3正切函数的性质与图象(word 版可编辑修改)即 tanx错误!。解得错误!kx错误!k,kZ。12函数y2tan错误!的单调递减区间是_ 答案 错误!(kZ)解析 求此函数的递减区间,也就是求y2tan错误!的递增区间,由k错误!3x错误!k错误!,kZ得:错误!错误!x错误!错误!,减区间是错误!,kZ。13三个数 cos10,tan58,sin168 的大小关系是_ 答案 sin168cos10tan58 解析 sin168sin12sin80cos101tan45tan58,sin168cos10tan58.14若 ta
10、n错误!1,则x的取值范围是_ 答案 错误!(kZ)解析 令z2x错误!,在错误!上满足 tanz1 的z的值是错误!z错误!,在整个定义域上有错误!k z错误!k,解不等式2k2x错误!错误!k,得错误!错误!布之前我们对文中内容进行仔细校对但是难免会有疏漏的地方但是任然希望高一数学必修同步练习正切函数的性质与的源泉前进的动力本文可编辑可修改如果觉得对您有帮助请收藏以便随时查阅最后祝您生活愉快业绩进步以下为高一版可编辑修改正切函数的性质与图象一选择题下列叙述正确的是函数在上是增函数函数在上是减函数函数在上是减函高一数学必修 4同步练习:1-4-3正切函数的性质与图象(word 版可编辑修改)
11、x错误!错误!,kZ.三、解答题 15求下列函数的单调区间:(1)ytan错误!;(2)y错误!tan2x1;(3)y3tan错误!。解析(1)由k错误!x错误!k错误!得 k错误!xk错误!(kZ),所以函数的单调递增区间是错误!,kZ.(2)由k22xk2得错误!错误!x错误!错误!(kZ),所以函数的单调递增区间是错误!(kZ)(3)y3tan错误!3tan错误!,由k错误!错误!错误!k错误!得 4k错误!0)的图象的相邻两支截直线y错误!所得线段长为错误!,求f(错误!)的值 解析 0,函数f(x)tanx的周期为错误!,且在每个独立区间内都是单调函数,两交点之间的距离为错误!错误!
12、,4,f(x)tan4x,f(错误!)tan 0.18已知函数f(x)3tan(错误!x错误!)(1)求f(x)的定义域、值域;(2)讨论f(x)的周期性,奇偶性和单调性 解析(1)由错误!x错误!错误!k,kZ,解得x错误!2k,kZ。定义域为x|x错误!2k,kZ,值域为 R。布之前我们对文中内容进行仔细校对但是难免会有疏漏的地方但是任然希望高一数学必修同步练习正切函数的性质与的源泉前进的动力本文可编辑可修改如果觉得对您有帮助请收藏以便随时查阅最后祝您生活愉快业绩进步以下为高一版可编辑修改正切函数的性质与图象一选择题下列叙述正确的是函数在上是增函数函数在上是减函数函数在上是减函高一数学必修 4同步练习:1-4-3正切函数的性质与图象(word 版可编辑修改)(2)f(x)为周期函数,周期T错误!2.f(x)为非奇非偶函数 由错误!k错误!x错误!错误!k,kZ,解得错误!2kx错误!2k,kZ.函数的单调递增区间为(错误!2k,错误!2k)(kZ)布之前我们对文中内容进行仔细校对但是难免会有疏漏的地方但是任然希望高一数学必修同步练习正切函数的性质与的源泉前进的动力本文可编辑可修改如果觉得对您有帮助请收藏以便随时查阅最后祝您生活愉快业绩进步以下为高一版可编辑修改正切函数的性质与图象一选择题下列叙述正确的是函数在上是增函数函数在上是减函数函数在上是减函