【100所名校】2019届甘肃省静宁县第一中学高三上学期第一次模拟考试数学(理)试题(解析版).docx

上传人:侯** 文档编号:92521643 上传时间:2023-06-06 格式:DOCX 页数:8 大小:700.10KB
返回 下载 相关 举报
【100所名校】2019届甘肃省静宁县第一中学高三上学期第一次模拟考试数学(理)试题(解析版).docx_第1页
第1页 / 共8页
【100所名校】2019届甘肃省静宁县第一中学高三上学期第一次模拟考试数学(理)试题(解析版).docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《【100所名校】2019届甘肃省静宁县第一中学高三上学期第一次模拟考试数学(理)试题(解析版).docx》由会员分享,可在线阅读,更多相关《【100所名校】2019届甘肃省静宁县第一中学高三上学期第一次模拟考试数学(理)试题(解析版).docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2019届甘肃省静宁县第一中学高三上学期第一次模拟考试数学(理)试题此卷只装订不密封班级 姓名 准考证号 考场号 座位号 数学注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。一、单选题1已知集合A=,集合B=,则AB=A B C D 2若在(1,3)上单调递

2、减,则实数a的取值范围是A (,3 B C D (0,3)3A=,B=,则ABA (2,4 B 2,4 C (,0)(0,4 D (,1)0,44已知函数,则的值为A B 0 C D 5下列说法错误的是A 对于命题,则B “”是“”的充分不必要条件C 若命题为假命题,则都是假命题D 命题“若,则”的逆否命题为:“若,则”6函数的零点所在的区间是A (,1) B (1,2) C (e,3) D (2,e)7已知、都是实数,那么“”是“”的A 充分不必要条件 B 必要不充分条件C 充分必要条件 D 既不充分也不必要条件8已知是定义在R上的奇函数,当时(m为常数),则的值为A 4 B -4 C 6

3、D -69函数的部分图象大致为A B C D 10已知函数,若函数在x2,+)上是单调递增的,则实数a的取值范围为A ( -,8) B (-,16C (-,-8)(8,+) D (-,-1616,+)11函数在0,2上单调递增,且函数是偶函数,则下列结论成立的是A B C D 12已知函数的导函数为,且对任意的恒成立,则下列不等式均成立的是A , B ,C , D ,二、填空题13设,则=_.14曲线在点A(1,2)处的切线与两坐标轴所围成的三角形的面积为_15偶函数在单调递减,不等式的解集为_.16已知,若,使得成立,则实数a的取值范围是_三、解答题17已知集合,.(1)若AB=,求实数m的

4、值;(2)若,求实数m的取值范围.18已知函数(a,b为常数且 )的图象经过A(1,8),B(3,32).(1)试求a,b的值;(2)若不等式在x(-,1时恒成立,求实数m的取值范围.19已知函数在处取得极值.(1)确定的值;(2)若,讨论的单调性.20设:实数x满足,:实数x满足.(1)若,且pq为真,求实数x的取值范围;(2)若且是的充分不必要条件,求实数a的取值范围.21已知函数,若,且,求的取值范围.22已知函数,m是实数.(1)若在区间(2,+)为增函数,求m的取值范围;(2)在(1)的条件下,函数有三个零点,求m的取值范围.好教育云平台 名校精编卷 第1页(共4页) 好教育云平台

5、名校精编卷 第2页(共4页)2019届甘肃省静宁县第一中学高三上学期第一次模拟考试数学(理)试题数学 答 案参考答案1B【解析】【分析】先求出集合,再根据得到求出,求出集合,再取交集.【详解】,,则可知,.,选.【点睛】本题考查集合的运算,由得到是本题解题的关键.2B【解析】【分析】先对函数求导,得恒成立,再将式子变为,进而求在区间上的最大值即可.【详解】在(1,3)上单调递减,则在上恒成立.即在上恒成立,所以.故选.【点睛】本题解题思想是将函数的单调性问题转化为恒成立问题,进而将恒成立问题转化为最值问题求参数的取值范围.恒成立问题中常用参变分离将变量和参量分别转化到不等式的两边,本题转化中,

6、这里等号很容易被忽略.3A【解析】【分析】直接求出两个集合,再取交集即可.【详解】,则.选.【点睛】本题考查集合的运算.4D【解析】由题意,化简得,而,所以,得,故,所以,所以,故选D.5C【解析】根据全称命题的否定是特称命题知A正确;由于可得,而由得或,所以“”是“”的充分不必要条件正确;命题为假命题,则不一定都是假命题,故C错;根据逆否命题的定义可知D正确,故选C.6B【解析】【分析】直接运用零点存在性定理带选项加以检验得出结论.【详解】令,当时,;当时,;当时,. 在其定义域上单调递增,则函数只有一个零点,又由上式可知,故函数零点在区间内.选.【点睛】判断函数零点所在区间通常结合函数的单

7、调性及零点存在性定理求解.7B【解析】,有可能为,故不能推出,反过来,则成立,故为必要不充分条件.8B【解析】【分析】根据奇函数的性质求出,再根据奇函数的定义求出.【详解】当时(m为常数),则,则. .函数 是定义在R上的奇函数, .【点睛】本题考查函数的奇偶性,解题的突破口是利用奇函数性质:如果函数是奇函数,且0在其定义域内,一定有9D【解析】,构造函数,故当时,即,排除两个选项.而,故排除选项.所以选D.10B【解析】【分析】由题意可得在恒成立,在将恒成立问题转化为最值问题求解.【详解】在上单调递增,则在上恒成立.则在上恒成立.所以.选B【点睛】1、函数在某个区间上单调增(或减),则(或)

8、恒成立.2、恒成立问题中求参数的取值范围通常是通过参变分离将问题转化为最值问题:(1)恒成立,则.(2)恒成立,则.11C【解析】【分析】函数是偶函数可得函数图像关于对称,利用对称性将数值转化到内比较大小.【详解】函数是偶函数,则其图象关于轴对称,所以函数的图像关于对称,则,函数在上单调递增,则有,所以.选.【点睛】本题考查抽象函数的性质.由的奇偶性得到的对称性是本题解题关键.需要考生熟练掌握函数解析式与函数图象变换之间的关系.12A【解析】【分析】构造函数,求出函数的导数,判断函数的单调性,从而求出结果.【详解】令,则. , , 是减函数,则有,即,所以.选.【点睛】本题考查函数与导数中利用

9、函数单调性比较大小.其中构造函数是解题的难点.一般可通过题设已知条件结合选项进行构造.对考生综合能力要求较高.13【解析】【分析】可将所求式子做如下转化,再代入函数解析式求解.【详解】.【点睛】此题是计算题,要注意分段函数分段求解,利用了定积分的可加性.14【解析】【分析】先将曲线变形,再通过求导求曲线在处的切线方程,再求面积.【详解】由可得时,.,则切线方程为即.切线与两坐标轴的交点分别为,所以三角形的面积为.【点睛】求过曲线上一点的切线方程一般有两种思路:1、设切线的斜率,联立曲线方程和直线方程通过判别式加以判断;2、通过求导求曲线在这个点处的斜率,进而求出切线方程.此题曲线是双曲线,若用

10、判别式法求解,则求出的结果要注意检验.用求导求解要注意所得解析式中.15【解析】【分析】先求出在上的解集,再利用偶函数的对称性求解.【详解】在上单调递减,且,则可知时.由偶函数图象关于轴对称,可知时.综上可得.【点睛】本题主要考查函数的奇偶性及其应用.16【解析】【分析】将题设中,使得成立可转化为,进而求出参数.【详解】,则可知在单调递增,在单调递减.故.在单调递减,在单调递增.故.,使得成立,则,所以.【点睛】本题解题的关键是将存在性问题转化为最值问题求解. 常见的存在性问题有:(1)有解,则.(2)有解,则.17(1)2;(2)【解析】【分析】(1)通过因式分解解出两个集合,再根据求解.(

11、2)求出的补集,再根据子集的概念求解.【详解】由已知得: ,. (1)因为,所以,故,所以.(2).因为,或,所以或.所以的取值范围为.【点睛】本题主要考查了集合的运算及其应用.18(1);(2)【解析】【分析】(1)直接将两点坐标代入函数解析式中求出.(2)将恒成立问题转化为,然后求在上的最小值即可.【详解】(1)由题意,解得.所以.(2)设,所以在上是减函数.所以当时, .若不等式在时恒成立,则在时恒成,则.所以,的取值范围为 .【点睛】求解含参数的恒成立问题,常通过参变分离将恒成立问题转化为最值问题,再利用函数的单调性求解.19(1);(2)见解析【解析】【分析】(1)求函数的导数,并根

12、据极值点的定义,代入可求得a的值。(2)先求得的表达式,求导数并令导数等于0。根据x的不同范围讨论的单调性即可。【详解】(1)对 求导得 .因为在 处取得极值,所以,即 ,解得 .(2)由(1)得 ,故 令 ,解得 或 或 .当 时, ,故 为减函数;当 时, ,故为增函数;当 时, ,故为减函数;当 时, ,故为增函数;综上可知在 和 上为减函数,在 和 上为增函数.【点睛】本题考查了导数在研究单调性中的综合应用,属于中档题。20(1);(2)【解析】【分析】(1)为真,则两者都为真,分别求解两个命题,结果取交集.(2)是的充分不必要条件,即可以推导出,而不能推导出.则命题中的集合是命题中的

13、集合的子集.【详解】(1)由得,当时,,即为真时,.由,得,得,即q为真时,.若为真,则真且真,所以实数的取值范围是.(2)由得,,.由,得,得.设,若p是q的充分不必要条件,则是的真子集,故,所以实数的取值范围为.【点睛】将命题之间的充分必要性转化为集合之间的关系是解此类题的基本思路.21【解析】【分析】令,结合函数图象得出的取值范围,则可以将用表示出来,根据的范围求出的范围.【详解】如图,作出函数的图象不妨设,由可知,函数的图象与直线有两个交点当时,函数;当时,函数所以.由,即,解得;由,即,解得.记,则.所以当时,函数单调递减;当时,函数单调递增所以函数的最小值为.因为,所以,即的取值范

14、围是.【点睛】本题通过数形结合得出的范围并将含两个字母的式子转化为只含一个字母的式子是解题关键,这种转化和数形结合都是高中数学学习中常用数学思想方法.22(1);(2)【解析】【分析】(1)由得在区间恒成立,即恒成立,由,得.(2)先求出,讨论和时的情况,进而求出的范围.【详解】(1),因为在区间为增函数,所以在区间恒成立,所以,即恒成立,由,得.所以的取值范围是.(2),所以,令,解得或,时, ,在上是增函数,不合题意,时,令,解得或,令,解得,所以在递增,在递减,所以极大值为,极小值为,要使有3个零点,需,解得.所以的取值范围是.【点睛】本题考查函数与导数综合应用:(1)导数与函数的单调性关系:求函数的单调增(减区间),则;已知函数在某个区间上是单调增函数(减函数),则.(2)利用导数求极值,通过函数零点情况确定函数极值的取值进而得到参数的取值范围.好教育云平台 名校精编卷答案 第9页(共12页) 好教育云平台 名校精编卷答案 第10页(共12页)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 升学试题

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁