《教师资格之中学数学学科知识与教学能力题库题库大全(典型题).docx》由会员分享,可在线阅读,更多相关《教师资格之中学数学学科知识与教学能力题库题库大全(典型题).docx(45页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、教师资格之中学数学学科知识与教学能力题库题库大全(典型题)第一部分 单选题(50题)1、患儿,男,7岁。患血友病5年,多次使用因子进行治疗,近2个月反复发热,口服抗生素治疗无效。实验室检查:Anti-HIV阳性。选择符合HIV诊断的结果A.CD4T细胞,CD8T细胞,CD4/CD8正常B.CD4细胞,CD8T细胞正常,CD4/CD8C.CD4T细胞正常,CD8T细胞,CD4/CD8D.CD4T细胞,CD8T细胞正常,CD4/CD8E.CD4T细胞正常,CD8T细胞,CD4/CD8【答案】: B 2、经台盼兰染色后,活细胞呈A.蓝色B.不着色C.紫色D.红色E.绿色【答案】: B 3、血小板膜糖
2、蛋白b与下列哪种血小板功能有关( )A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.血块收缩功能【答案】: A 4、设 A 为 n 阶方阵,B 是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。A.|A|=|B|B.|A|B|C.若|A|=0,则-定有|B|=0D.若|A|0,则-定有|B|0【答案】: C 5、( )是在数学教学实施过程中为了查明学生在某一阶段的数学学习活动达到学习目标的程度,包括所取得的进步和存在的问题而使用的一种评价。A.诊断性评价B.形成性评价C.终结性评价D.相对评价【答案】: B 6、下列语句是命题的是( )。A.B.C.D.【答案】: D 7、
3、最常见的Ig缺陷病是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】: A 8、标准定值血清可用来作为A.室间质控B.室内检测C.变异系数D.平均值E.标准差【答案】: B 9、设 A 为 n 阶矩阵,B 是经 A 若干次初等行变换得到的矩阵,则下列结论正确的是() A.|A|=|B|B.|A|B|C.若|A|=0,则一定有|B|=0D.若|A|0,则一定有|B|0【答案】: C 10、维生素K缺乏和肝病导致凝血障碍,体内因子减少的是A.、B.、C.、D.、E.、【答案】: A 11、型超敏反应A.由IgE抗体介导B.单
4、核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】: A 12、NO是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】: B 13、已知随机变量 X 服从正态分布 X(,2),假设随机变量 Y=2X-3,Y 服从的分布是( ) A.N(2-3,22-3)B.N(2-3,42)C.N(2-3,42+9)D.N(2-3,42-9)【答案】: B 14、细胞核内出现颗粒状荧光,分裂期细胞染色体无荧光显示的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】: B 15、祖冲之
5、的代表作是( )。A.海岛算经B.数书九章C.微积分D.缀术【答案】: D 16、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】: C 17、最早使用“函数”(function)这一术语的数学家是( )。A.约翰贝努利B.莱布尼茨C.雅各布贝努利D.欧拉【答案】: B 18、下列关于椭圆的叙述: 平面内到两个定点的距离之和等于常数的动点轨迹是椭圆; 平面内到定直线和直线外的定点距离之比为大于 1 的常数的动点轨迹是椭圆; 从椭圆
6、的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点; 平面与圆柱面的截面是椭圆。 正确的个数是( )A.0B.1C.2D.3【答案】: C 19、适应性免疫应答A.具有特异性B.时相是在感染后数分钟至96hC.吞噬细胞是主要效应细胞D.可遗传E.先天获得【答案】: A 20、型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】: D 21、下列关于数学思想的说法中,错误的一项是( )A.数学思想是现实世界的空间形式和数量关系反映到人的意识之中并经过思维活动产生的结果B.数学思想是要在现实世界中找到具有直观意义
7、的现实原型C.数学思想是对数学事实与数学理论概念、定理、公式、法则、方法的本质认识D.数学思想是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观念【答案】: B 22、欲了解M蛋白的类型应做A.血清蛋白区带电泳B.免疫电泳C.免疫固定电泳D.免疫球蛋白的定量测定E.尿本周蛋白检测【答案】: B 23、与向量 a=(2,3,1)垂直的平面是( )。A.x-2y+z=3B.2x+y+3z=3C.2x+3y+z=3D.xy+z=3【答案】: C 24、下列哪一项是恶性组织细胞病的最重要特征A.骨髓涂片见到形态异常的组织细胞B.全血细胞减少C.血涂片找到不典型的单核细胞D.起病急,高热,衰竭和
8、进行性贫血E.以上都不正确【答案】: A 25、男性,29岁,发热半个月。体检:两侧颈部淋巴结肿大(约3cm4cm),肝肋下2cm,脾肋下25cm,胸骨压痛,CT显示后腹膜淋巴结肿大。检验:血红蛋白量85gL,白细胞数3510A.多发性骨髓瘤B.急性白血病C.恶性淋巴瘤D.传染性单核细胞增多症E.骨髓增生异常综合征【答案】: C 26、下列哪些不是初中数学课程的核心概念()。A.数感B.空间观念C.数据处理D.推理能力【答案】: C 27、患者凝血酶原时间(PT)延长,提示下列哪一组凝血因子缺陷( )A.因子,B.因子C.因子,D.因子,E.因子,【答案】: C 28、临床实验室定量分析测定结
9、果的误差应该是A.愈小愈好B.先进设备C.室内质控D.在允许误差内E.质控试剂【答案】: D 29、丝氨酸蛋白酶抑制因子是A.血栓收缩蛋白B.ADP、血栓烷AC.D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: C 30、下面哪位不是数学家? ( ) A.祖冲之B.秦九韶C.孙思邈D.杨辉【答案】: C 31、细胞因子诱导产物测定法目前最常用于测定A.IL-1B.INFC.TNFD.IL-6E.IL-8【答案】: A 32、集合A=0,2,a2,B=0,1,a),若AB=0,1,则实数a的值为( )。A.0B.-1C.1D.-1或1【答案】: B 33、利用细胞代谢变化作
10、为增殖指征来检测细胞因子生物活性的方法称为A.放射性核素掺入法B.NBT法C.细胞毒测定D.MTT比色法E.免疫化学法【答案】: D 34、九章算数注的作者是( )。A.刘徽B.秦九韶C.杨辉D.赵爽【答案】: A 35、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。同卵双生兄弟间的器官移植属于A.自身移植B.同系移植C.同种移植D.异种移植E.胚胎组织移植【答案】: B 36、弥散性血管内凝血常发生于下列疾病,其中哪项不正确A.败血症B.肌肉血肿C.大面积烧伤D.重症肝炎E.羊水栓塞【答案】: B 37、下列命题不正确的是( )。 A.有理数对于乘法运算封闭B.有理数可以比较大小C.有理
11、数集是实数集的子集D.有理数集是有界集【答案】: D 38、设随机变量XN(0,1),X的的分布函数为(x),则P(|X|2)的值为( )A.21-(2)B.2(2)-1C.2-(2)D.1-2(2)【答案】: A 39、干细胞培养中常将50个或大于50个的细胞团称为A.集落B.微丛C.小丛D.大丛E.集团【答案】: A 40、下列选项中,( )属于影响初中数学课程的社会发展因素。A.数学的知识、方法和意义B.从教育的角度对数学所形成的价值认识C.学生的知识、经验和环境背景D.当代社会的科学技术、人文精神中蕴含的数学知识与素养等【答案】: D 41、通常下列哪种疾病不会出现粒红比例减低( )A
12、.粒细胞缺乏症B.急性化脓性感染C.脾功能亢进D.真性红细胞增多症E.溶血性贫血【答案】: B 42、内、外源性凝血系统形成凝血活酶时,都需要的因子是A.因子B.因子C.因子D.因子E.因子【答案】: D 43、单核-吞噬细胞系统和树突状细胞属于A.组织细胞B.淋巴细胞C.辅佐细胞D.杀伤细胞E.记忆细胞【答案】: C 44、已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( )。A.外离B.外切C.相交D.内切【答案】: B 45、最常见的Ig缺陷病是A.选择性IgA缺陷病B.先天性胸腺发育不全综合征C.遗传性血管神经性水肿D.慢性肉芽肿病E.阵发性夜间血红蛋白尿【答案】: A
13、46、义务教育数学课程标准(2011 年版)从四个方面阐述了课程目标,这四个目标是( )。A.知识技能、数学思考、问题解决、情感态度B.基础知识、基本技能、问题解决、情感态度C.基础知识、基本技能、数学思考、情感态度D.知识技能、问题解决、数学创新、情感态度【答案】: A 47、关于慢性白血病的叙述,错误的是A.以慢粒多见B.大多由急性转化而来C.慢性患者有半数以上可急性变D.慢性急性变用药物化疗无效E.慢性急性变患者大多预后不好【答案】: B 48、已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( )。A.外离B.外切C.相交D.内切【答案】: B 49、不符合溶贫骨髓象特征的
14、是( )A.骨髓增生明显活跃B.粒红比值减低C.三系显著减低D.无巨幼红细胞E.以上都是【答案】: C 50、男性,10岁,发热1周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下1cm。入院时血常规结果为:血红蛋白量113gL:白细胞数810A.慢性淋巴细胞白血病B.传染性单核细胞增多症C.上呼吸道感染D.恶性淋巴瘤E.急性淋巴细胞白血病【答案】: B 第二部分 多选题(50题)1、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作1弧度的角?”如果老师
15、照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8分)(2)确定“弧度制”的教学目标和教学重难点;(10分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12分)【答案】: 2、丝氨酸蛋白酶抑制因子是A.血栓收缩蛋白B.ADP、血栓烷AC.D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: C 3、患者,女,35岁。发热、咽痛1天。查体:扁桃体度肿大,有脓点。实验室检查:血清AS
16、O水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为A.肾小管性蛋白尿B.肾小球性蛋白尿C.混合性蛋白尿D.溢出性蛋白尿E.生理性蛋白尿【答案】: B 4、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为A.免疫透射和散射浊度分析B.免疫散射浊度分析C.免疫透射浊度分析D.免疫乳胶浊度分析E.速率和终点散射浊度测定【答案】: A 5、丝氨酸蛋白酶抑制因子是A.血栓收缩蛋白B.ADP、血栓烷AC.
17、D.GPb或GPaE.蛋白C.血栓调节蛋白、活化蛋白C抑制物【答案】: C 6、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 7、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,
18、-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】: 8、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】: A 9、在“有理数的加法”一节中,对于
19、有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨
20、论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】:本题考查考生对基本数学思想方法的掌握及应用。 10、患者,女,25岁。因咳嗽、发热7天就诊。查体T37.8,右上肺闻及啰音,胸片示右肺上叶见片状阴影。结核菌素试验:红肿直径大于20mm。该患者可能为A.对结核分枝杆菌无免疫力B.处于结核病恢复期C.处于结核病活动期D.注射过卡介苗E.处于结核分枝杆菌早期感染【答案】: C 11、5
21、-HT存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: B 12、以普通高中课程标准实验教科书数学1(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)【答案】: 13、下列描述为演绎推理的是( )。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】: A 14、下列是三位教师对“等比数列概念”
22、引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等
23、差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】: 15、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。 16、义务教育阶段的数学
24、课程应该具有( )。 A.基础性、普及性、发展性B.实践性、普及性、选拔性C.基础性、实践性、选拔性D.实践性、普及性、发展性【答案】: A 17、血小板第4因子(PFA.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: C 18、一级结构为对称性二聚体的是A.因子B.因子C.因子D.因子E.因子【答案】: C 19、患者,女,35岁。发热、咽痛1天。查体:扁桃体度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为A.肾小管性蛋白尿B.肾小球性蛋白尿C.混合性
25、蛋白尿D.溢出性蛋白尿E.生理性蛋白尿【答案】: B 20、NO是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】: B 21、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性【答案】:本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说
26、明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。 22、 抛掷两粒正方
27、体骰子(每个面上的点数分别为1, 2, . 6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()A.5/36B.1/9C.1/12D.1/18【答案】: B 23、创立解析几何的主要数学家是( ).A.笛卡尔,费马B.笛卡尔,拉格朗日C.莱布尼茨,牛顿D.柯西,牛顿【答案】: A 24、ATP存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】: A 25、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,
28、造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48172)2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17;2x+4y=48。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)【答案】:(1)解法一所体现的算法是:S1假设没有小兔则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设
29、总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)2;S5小鸡的只数为n-(m-2n)2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。 26、义务教育教学课程标准(2011年版)关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理平行四边形的对边以及对角相等,请基于该要求,
30、完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12分)【答案】:本题主要以初中数学教学中的重要内容之一“平行四边形的性质定理”为例,平行四边形的性质定理的基础知识,初中数学课程内容、课程标准及实施建议,教学过程的基本要素及教学方法的选择,教学设计中的教学目标、教学过程及教学策略等相关知识,比较综合性地考查学科知识、课程知识、教学知识以及教学技能的基本知识和基本技能。(1)新课标倡导三维教学目标,知识与技能目标、过程与方法目标、情感态度与价
31、值观目标。知识与技能目标,是对学生学习结果的描述,即学生同学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。情感态度与价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。(2)
32、让学生发现平行四边形性质的教学流程,可以从不同角度进行设计,如“观察猜想验证归纳”,“动手操作小组讨论归纳总结”等,但重要的是让学生在学习过程中进行主动学习,教师只是起到引导的作用,充分体现“学生是主体,教师是主导”的教学理念。(3)平行四边形关于边、角的性质定理,即平行四边形的对边以及对角相等,这一定理的证明是通过证明三角形全等来证明对边、对角相等来进行的。注意在平行四边形性质证明的教学流程中,务必使学生领悟证明过程中所用到的转化思想与方法。 27、推理一般包括合情推理与演绎推理。()请分别阐述合情推理与演绎推理的含义;(分)()举例说明合情推理与演绎推理在解决数学问题中的作用(分),并阐述
33、两者之间的关系。(分)【答案】:本题主要考查合情推理与演绎推理的概念及关系。 28、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。【答案】:本题主要考查对“数学化”的理解。 29、-血小板球蛋白(-TG)存在于A.微丝B.致密颗粒C
34、.颗粒D.溶酶体颗粒E.微管【答案】: C 30、义务教育数学课程标准(2011年版)附录中给出了两个例子:例1.计算1515,2525,9595,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:12=2,23=6,34=12,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”
35、和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】:本题主要考查考生对于新授课教学设计的能力。 31、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是
36、,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】:本题考查考生对基本数学思想方法的掌握及应用。 32、外周免疫器官包括A.脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、淋巴结C.淋巴结、骨髓、脾脏D
37、.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、【答案】: A 33、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。 34、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】:本题考查数学文化在
38、数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。 35、下面是某位老师引入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28,l月份的平均气温是零下3,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28减去零下3,得到的答案是31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28,我们常说成28,可用28表示,但是零下3不能说成3呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c。这时,零下3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合
39、理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】:(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设
40、一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。 36、细胞膜型Ig合成中恒定区基因所连接的外显子是( )A.CB.SC.MCD.E.C【答案】: C 37、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群
41、里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48172)2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17;2x+4y=48。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种
42、算法的共同点。(10分)【答案】:(1)解法一所体现的算法是:S1假设没有小兔则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)2;S5小鸡的只数为n-(m-2n)2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。 38、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】:本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)