《抽屉原理》教学设计(4篇).docx

上传人:碎****木 文档编号:92455910 上传时间:2023-06-05 格式:DOCX 页数:17 大小:20.57KB
返回 下载 相关 举报
《抽屉原理》教学设计(4篇).docx_第1页
第1页 / 共17页
《抽屉原理》教学设计(4篇).docx_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《《抽屉原理》教学设计(4篇).docx》由会员分享,可在线阅读,更多相关《《抽屉原理》教学设计(4篇).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 抽屉原理教学设计(4篇) 教学目标 1经受“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简洁的实际问题。 2通过操作进展学生的类推力量,形成比拟抽象的数学思维。 3通过“抽屉原理”的敏捷应用感受数学的魅力。 教学重、难点 经受“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简洁实际问题加以“模型化”。 教学过程 一、问题引入。 师:同学们,你们玩过抢椅子的嬉戏吗?现在,教师这里预备了3把椅子,请4个同学上来,谁愿来? 1嬉戏要求:开头以后,请你们5个都坐在椅子上,每个人必需都坐下。 2争论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 嬉戏开头,让学生初

2、步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。 引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个好玩的数学原理,这节课我们就一起来讨论这个原理。 二、探究新知 (一)教学例1 1出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来展现一下你摆放的状况?(指名摆)依据学生摆的状况,师出示各种状况。 板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1), 问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢

3、? 引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。 问题: (1)“总有”是什么意思?(肯定有) (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?) 教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢? 学生思索并进展组内沟通,教师选代表进展总结:假如每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,肯定会消失“总有一个盒子里肯定至少有2枝”。

4、 问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?你发觉什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。) 总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。 2完成课下“做一做”,学习解决问题。 问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么? (1)学生活动独立思索自主探究 (2)沟通、说理活动。 引导学生分析:假如一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个

5、笼里”的结论是正确的。 总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。 (二)教学例2 1出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? (留给学生思索的空间,师巡察了解各种状况) 2学生汇报,教师赐予表扬后并总结: 总结1:把5本书放进2个抽屉里,假如每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。 总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。 问

6、题:假如把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生争论) 引导学生思索:究竟是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进展讨论、争论。) 总结:用书的本数除以抽屉数,再用所得的商加1,就会发觉“总有一个抽屉里至少有商加1本书”了。 师:同学们的这一发觉,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决很多好玩的问题,并且经常能得到一些令人惊异的结果。下面我们

7、应用这一原理解决问题。 (三)学生自学例题3并进展自主沟通,试着用手中的用具模拟演示场景。 三、解决问题 四、全课小结 抽屉原理教学设计 篇二 教学内容: 教材简析: 抽屉原理是义务教育课程标准试验教科书数学六年级下册第五单元数学广角的教学内容。这局部教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的根底上,对一些简洁的实际问题加以“模型化”,会用“抽屉原理”加以解决。“抽屉原理”在生活中运用广泛,学生在生活中经常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。 学情分析:

8、 六年级学生的规律思维力量、小组合作力量和动手操作力量都有了较大的提高,加上已有的生活阅历,很简单感受到用“抽屉原理”解决问题带来的乐趣。激趣是新课导入的抓手,喜爱和奇怪心比什么都重要,嬉戏,让学生置身嬉戏中开头学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特殊是对教材中的结论“总有、至少”等字词作了充分的阐释,帮忙学生进展较好的“建模”,使简单问题简洁化,简洁问题模型化,充分表达了新课标要求。 教学目标: 1、使学生初步了解抽屉原理,运用抽屉原理学问解决简洁的实际问题。 2、使学生经受抽屉原理的探究过程,通过动手操

9、作、分析、推理等活动,发觉、归纳、总结原理。 3、使学生通过“抽屉原理”的敏捷应用感受数学的魅力;提高解决问题的力量和兴趣。 教学重点: 经受“抽屉原理”的探究过程,初步了解“抽屉原理”。 教学难点: 理解“抽屉原理”,并对一些简洁实际问题加以“模型化”。 教学过程: 一、课前嬉戏,导入新课。 嬉戏请5名同学到前面来,教师这有4张凳子,教师喊123开头,要求每位同学都必需坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。 我们刚刚做了个小嬉戏,但小嬉戏蕴含着一个好玩的数学原理。今日我们就来讨论这个好玩的数学原理抽屉原理。 设计意图:把抽象的数学学问与生活中的嬉

10、戏有机结合起来,使教学从学生熟识和宠爱的嬉戏引入,让学生在已有生活阅历的根底上初步感知抽象的“抽屉原理”,提高学生的学习兴趣。 二、通过操作,探究新知 (一)活动一 1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法? (板书:小棒4杯子3) 提出要求:把全部的摆法都摆出来,看看你会有什么发觉? (1)同桌之间相互合作,动手摆,把各种状况记录下来。 (2)指名一位同学展现不同摆法,教师板书。(4,0,0)(3,1,0)(2,2,0)(2,1,1), (3)引导学生观看发觉:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有) (4)师生共同理解“总有”“至少

11、”有2枝什么意思? (5)明确:刚刚同学们把全部摆法一一列举出来,得到了这样的结论,我们称之为“枚举法”。 设计意图:学生通过自己动手操作,在试验中、合作中、争论中发觉规律,分析问题的形成,把动脑思索与动手操作相结合,独立思索与小组合作相结合。让同学之间相互帮忙,相互提高,让问题在学生的探究中得到解决。 2、要把6根小棒放进5杯子里,你感觉会有什么结果呢? (1)启发学生猜测结果 把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论? (2)引导学生选择适宜的方法 提出要求:想一个快速而又简洁的方法,只摆一种状况,你就可以得到这个结论? (3)学生尝试操作验证。 (4)

12、全班沟通,操作演示。 学生活动后组织沟通:先每个杯子摆一根,每个杯子放1跟,5个杯子,就已经放了5根,还有1根不管怎么放,总有一个杯子至少有两根小棒 预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。 (5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。 3、课件出示: 把100根小棒放进99个杯子呢? 谈话:要不要也预备100根小棒和99根杯子呢?可以怎么办? 引导用假设法进展思索:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。 这也是数学中一种很重要的方

13、法“假设法”。 引导学生观看小棒数和杯子数,你有什么发觉? 明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。 设计意图:留意鼓舞学生运用已有的学问对新学习的内容进展联想和猜想,再通过试验和推理验证,培育学生良好的学习和思索习惯。在猜想的根底上进展试验和推理,从“枚举法”到“假设法”,使学生受到讨论方法和思维方式的训练,进展和提高自主学习的力量。 (二)活动二 谈话:接下来,我们把数学书当做物体数放入抽屉里,看看又有什么发觉? 课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 板书:书抽屉总有一个抽屉放入算式 52352=21 最

14、新抽屉原理教学设计 篇三 【学问技能】 1理解最简洁的抽屉原理及抽屉原理的一般形式。 2引导学生采纳操作的方法进展枚举及假设法探究。 【过程方法】 经受抽屉原理的探究过程,初步了解抽屉原理。 【情感态度价值观】 体会数学学问在日常生活中的广泛应用,培育学生的探究意识和力量。 【教学重、难点】经受“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简洁实际问题加以“模型化”。 【教学过程】 一、问题引入。 师:同学们,你们玩过抢椅子的嬉戏吗?现在,教师这里预备了3把椅子,请4个同学上来,谁愿来? 1嬉戏要求:开头以后,请你们5个都坐在椅子上,每个人必需都坐下。 2争论:“不管怎么坐,总有一把椅子上

15、至少坐两个同学”这句话说得对吗? 嬉戏开头,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。 引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个好玩的数学原理,这节课我们就一起来讨论这个原理。 二、探究新知 (一)教学例1 1出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来展现一下你摆放的状况?(指名摆)依据学生摆的状况,师出示各种状况。 板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1), 问题:4个人坐在3把椅子上,不管怎么坐,

16、总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢? 引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。 问题: (1)“总有”是什么意思?(肯定有) (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?) 教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢? 学生思索并进展组内沟通,教师选代表进展总结:假如每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个

17、盒子里,肯定会消失“总有一个盒子里肯定至少有2枝”。 问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?你发觉什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。) 最新抽屉原理教学设计 篇四 教学目标: 1学问与力量目标: 经受“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简洁的实际问题。通过猜想、验证、观看、分析等数学活动,建立数学模型,发觉规律。渗透“建模”思想。 2过程与方法目标: 经受从详细到抽象的探究过程,提高学生有依据、有条理地进展思索和推理的力量。 3情感、态度与价值观

18、目标: 通过“抽屉原理”的敏捷应用,提高学生解决数学问题的力量和兴趣,感受到数学文化及数学的魅力。 教学重点:经受“抽屉原理”的探究过程,初步了解“抽屉原理”。 教学难点:理解“抽屉原理”,并对一些简洁实际问题加以“模型化”。 教学预备:教具:5个杯子,6根小棒;学具:每组5个杯子,6根小棒。 教学过程: 一、嬉戏激趣,初步体验。 师:同学们,你们玩过扑克牌吗?下面我们用扑克牌来玩个嬉戏。大家知道一副扑克牌有54张,假如去掉两张王牌,就剩52张,对吗?假如从这52张扑克牌中任意抽取5张,我敢确定地说:“张5张扑克牌至少有2张是同一种花色的,你们信吗?那就请5位同学上来各抽一张,我们来验证一下。

19、假如再请五位同学来抽,我还敢这样确定地说,你们信任吗?其实这里面隐藏着一个特别好玩的数学原理,想不想讨论啊? 二、操作探究,发觉规律。 (一)经受“抽屉原理”的探究过程,理解原理。 1讨论小棒数比杯子数多1的状况。 师:今日这节课我们就用小棒和杯子来讨论。 师:假如把3根小棒放在2个杯子里,该怎样放?有几种放法? 学生分组操作,并把操作的结果记录下来。 请一个小组汇报操作过程,教师在黑板上记录。 师:观看这全部的摆法,你们发觉总有一个杯子里至少有几根小棒?板书:总有一个杯子里至少有。 师:依此推想下去,4根小棒放在3个杯子里,又可以怎样放?大家再来摆摆看,看看又有什么发觉? 学生分组操作,并把

20、操作的结果记录下来。 请一个小组代表汇报操作过程,教师在黑板上记录。 师:观看全部的摆法,你发觉了什么?这里的“总有”是什么意思?“至少”又是什么意思? 师:那假如把6根小棒放在5个杯子里,猜一猜,会有什么样的结果? 师:怎样验证猜想的结果对不对,你又什么好方法?引导学生不再一一列举,用平均分的方法来找答案。并用算式表示分的结果:65=11 师:那假如用这种方法,你知道把7根小棒放在6个杯子里,把10根小棒放在9个杯子里,把100根小棒放在99个杯子里,会有什么样的结果呢?你又从中发觉了什么规律呢? 师:我们发觉了小棒的数量比杯子的数量多1,总有一个杯子里至少有2根小棒。那假如小棒的数量比杯子

21、的数量多2、多3,又会有什么样的结果呢? 2、讨论小棒数比杯子数多2、多3的状况。 师:假如把5根小棒放在3个杯子里,会有什么结果? 引导:先平均分,每个杯子里分得1根小棒,余下的2根小棒又该怎么分呢? 师:把7根小棒放在3个杯子里,会有什么结果呢?为什么? 3、讨论小棒数比杯子数的2倍多、3倍多等状况。 师:假如把9根小棒放在4个杯子里,把15根小棒放在4个杯子里,分别又会有什么结果? 小组内争论,再请同学说结果和理由。 4、总结规律。 师:我们将小棒看做物体、把杯子看做抽屉,你发觉了什么规律? 总结:把m个物体放在n个抽屉里(mn),总有一个抽屉至少有“商+1”个物体。 5、介绍抽屉原理。

22、 “抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决很多好玩的问题,并且经常能得到一些令人惊异的结果。 三、应用“抽屉原理”,感受数学的魅力。 1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?为什么? 先思索:这里是把什么看做物体?什么看做抽屉?再说结果和理由。 2、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么? 3、向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么? (1)六年级里至少有两人的生日是同一天。 (2)六(2)班中至少有5人是同一个月诞生的。 4、张叔叔参与飞镖竞赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么? 5、师:开课时我们做的嬉戏还记得吗?为什么教师可以确定地说:从52张牌中任意抽取5张牌,至少会有2张牌是同一花色的?你能用所学的抽屉原理来解释吗? 四、全课小结。 说一说:今日这节课,我们又学习了什么新学问?(师生共同对本节课的内容进展小结) 五、布置作业。 课本73页练习十二第2、4题。 六、板书设计。 数学广角抽屉原理 上面内容就是一秘为您整理出来的4篇抽屉原理教学设计,盼望对您的写作有所帮忙。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁