数字信号处理第7章课件.ppt

上传人:飞****2 文档编号:92377016 上传时间:2023-06-03 格式:PPT 页数:128 大小:3.92MB
返回 下载 相关 举报
数字信号处理第7章课件.ppt_第1页
第1页 / 共128页
数字信号处理第7章课件.ppt_第2页
第2页 / 共128页
点击查看更多>>
资源描述

《数字信号处理第7章课件.ppt》由会员分享,可在线阅读,更多相关《数字信号处理第7章课件.ppt(128页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第七章 有限长单位脉冲响应(FIR)滤波器的设计方法序言7.1线性相位FIR 数字滤波器的特性7.2窗口设计法(时间窗口法)7.3频率取样法7.4FIR 数字滤波器的最优化设计7.5IIR与FIR 数字滤器的比较1FIR 数字滤波器的差分方程描述对应的系统函数因为它是一种线性时不变系统,可用卷积和形式表示比较、得:序言2FIR 数字滤波器的特点(与IIR数字滤波器比较):优点 优点:(1)很容易获得严格的线性相位,避免被处理的信号产生相位失真,这一特点在宽频带信号处理、阵列信号处理、数据传输等系统中非常重要(2)永远稳定,无稳定性问题3(3)任何一个非因果的有限长序列,总可以通过一定的延时,转

2、变为因果序列,所以因果性总是满足;(4)无反馈运算,运算误差小。4缺点:缺点:(1)因为无极点,要获得好的过渡带特性,需以较高的阶数为代价;(2)无法利用模拟滤波器的设计结果,一般无解析设计公式,要借助计算机辅助设计程序完成。57.1 线性相位FIR 数字滤波器的特性 1线性相位的条件线性相位意味着一个系统的相频特性是频率的线性函数,即式中 为常数,此时通过这一系统的各频率分量的时延为一相同的常数,系统的群时延为6FIR 滤波器的DTFT 为式中H()是正或负的实函数。等式中间和等式右边的实部与虚部应当各自相等,同样实部与虚部的比值应当相等:7将上式两边交叉相乘,再将等式右边各项移到左边,应用

3、三角函数的恒等关系满足上式的条件是8另外一种情况是,除了上述的线性相位外,还有一附加的相位,即利用类似的关系,可以得出新的解答为9偶对称 奇对称10分四种情况(1)h(n)偶对称,N 为奇数h(n)=h(N-1-n)2线性相位FIR 滤波器的幅度特性1112令,则令则由于偶对称,因此对这些频率也呈偶对称。13(2)h(n)偶 对 称,N 为 偶 数h(n)=h(N-1-n)14令,则15或写为:由于奇对称,所以对也为奇对称,且由于时,处必有一零点,因此这种情况不能用于设计时的滤波器,如高通、带阻滤波器。16(3).h(n)奇对称,N 为奇数,h(n)=-h(N-1-n)17令n=m+(N-1)

4、/2,得:18所以由于点呈奇对称,所以对这些点也奇对称。由于时,相当于H(z)在处有两个零点,不能用于的滤波器设计,故不能用作低通、高通和带阻滤波器的设计。19(4).h(n)奇对称,N 为偶数令20由于在=0,处为零,所以H()在=0,2 处为零,即H(z)在z=1 上有零点,并对=0,2 呈奇对称。对=呈偶对称。21四 四种 种线 线性 性相 相位 位F FI IR R滤 滤波 波器 器关于0、2偶对称关于 奇对称H()=0关于0、2奇对称关于0、2 奇对称 偶对称22四种线性相位FIRDF 特性:第一种情况,偶、奇,四种滤波器 都可设计 都可设计。第二种情况,偶、偶,可设计低、带通滤波器

5、 可设计低、带通滤波器,不能设计高通和带阻。第三种情况,奇、奇,只能设计带通滤波器 只能设计带通滤波器,其它滤波器都不能设计。第四种情况,奇、偶,可设计高通、带通滤波器 可设计高通、带通滤波器,不能设 计低通和带阻。23例1N=5,h(0)=h(1)=h(3)=h(4)=-1/2,h(2)=2,求幅度函数H()。解为奇数并且h(n)满足偶对称关系a(0)=h(2)=2 a(1)=2 h(1)=-1 a(2)=2 h(0)=-1 H()=2-cos-cos2=2-(cos+cos2)2425小结:四种FIR 数字滤波器的相位特性只取决于h(n)的对称性,而与h(n)的值无关。幅度特性取决于h(n

6、)。设计FIR 数字滤波器时,在保证h(n)对称的条件下,只要完成幅度特性的逼近即可。注意:当H()用H()表示时,当H()为奇对称时,其相频特性中还应加一个固定相移。263线性相位FIR 滤波器的零点特性27n 由该式可看出,若z=zi是H(z)的零点,则z=zi-1也一定是H(z)的零点。由于h(n)是实数,H(z)的零点还必须共轭或对,所以z=zi*及z=1/z*也必是零点。n 所以线性相位滤波器的零点必须是互为倒数的共轭对,即成四出现,这种共轭对共有四种28可能的情况:既不在单位园上,也不在实轴上,有四个互为倒数的两组共轭对,ziz*i1/zi1/z*i图4.2(a)在 单 位 圆 上

7、,但 不 在 实 轴 上,因 倒 数 就 是 自 己 的 共 轭,所 以 有 一对共轭零点,zi,z*i图4.2(b)不 在 单 位 圆 上,但 在 实 轴 上,是 实 数,共 轭 就 是 自 己,所 以 有 一 对互为倒数的零点,zi,1/zi图4.2(c)又 在 单 位 圆 上,又 在 实 轴 上,共 轭 和 倒 数 都 合 为 一 点,所 以 成 单出现,只有两种可能,zi=1 或zi=-1 图4.2(d),p922930我们从幅度响应的讨论中已经知道,对于第二种FIR 滤波器(h(n)偶对称,N 为偶数),即 是 的零点,既在单位圆,又在实轴,所以必有单根同样道理,对于第三种FIR 滤

8、波器,h(n)奇对称,N 为奇数,因所以z=1,z=-1 都是H(z)的单根;对于第四种滤波器,h(n)奇对称,N 为偶数,H(O)=0,所以z=1 是H(z)的单根。所以,h(n)奇对称H(0)=0N 为偶数H()=031线性相位滤波器是FIR 滤波器中最重要的一种,应用最广。实际使用时应根据需用选择其合适类型,并在设计时遵循其约束条件。32337.2 窗口设计法(时域)如 果 希 望 得 到 的 滤 波 器 的 理 想 频 率 响 应 为,那 么FIR 滤波器的设计就在于寻找一个传递函数去逼近逼近方法有三种:窗口设计法(时域逼近)频率采样法(频域逼近)最优化设计(等波纹逼近)34时间窗口设

9、计法是从单位脉冲响应序列着手,使h(n)逼近理想的单位脉冲响应序列hd(n)。hd(n)可以从理想频响的傅立叶反变换获得35但一般来说,理想频响是分段恒定,在边界频率处有突变点,所以,这样得到的理想单位脉冲响应hd(n)往往都是无限长序列,而且是非因果的。但FIR 的h(n)是有限长的,问题是怎样用一个有限长的序列去近似无限长的hd(n)。36n 最简单的办法是直接截取一段hd(n)代替h(n)。这种截取可以形象地想象为h(n)是通过一个“窗口”所看到的一段hd(n),因此,h(n)也可表达为hd(n)和一个“窗函数”的乘积,即h(n)=w(n)hd(n)n 在这里窗口函数就是矩形脉冲函数RN

10、(n),当然以后我们还可看到,为了改善设计滤波器的特性,窗函数还可以有其它的形式,相当于在矩形窗内对hd(n)作一定的加权处理。3738设计步骤:1)由定义3)卷积插值3940以一个截止频率为c的线性相位理想低通滤波器为例,讨论FIR 的设计问题。a.对于给定的理想低通滤波器,计算一.矩形窗口法:低通滤波器的延时41则42这是一个以为中心的偶对称的无限长非因果序列,如果截取一段n=0 N-1 的hd(n)作为h(n),则为保证所得到的是线性相位FIR 滤波器,延时应为h(n)长度N 的一半,即43其中b.计算44c.计算设为窗口函数的频谱:用幅度函数和相位函数来表示,则有其线性相位部分则是表示

11、延时一半长度,45对频响起作用的是它的幅度函数46理想频响也可以写成幅度函数和相位函数的表示形式Hd(ej)=Hd()e-j其中幅度函数为47两个信号时域的乘积对应于频域卷积,所以有48如果也以幅度函数和相位函数来表示H(ej),则实际FIR 滤波器的幅度函数H()为正好是理想滤波器幅度函数与窗函数幅度函数的卷积。49矩形窗的卷积过程(P95 的图4.5来说明)504个特殊频率点看卷积结果:(1)=0 时,H(0)等于在-c,c 内的积分面积因一般故H(0)近似为:在-,内的积分面积51(2)=c时,一半重叠,H(c)=0.5H(0);(3)=c2/N时,第一旁瓣(负数)在通带外,出现正肩峰;

12、(4)=c+2/N时,第一旁瓣(负数)在通带内,出现负肩峰。52窗口函数对理想特性的影响:改变了理想频响的边沿特性,形成过渡带,宽为,等于WR()的主瓣宽度。(决定于窗长)过渡带两旁产生肩峰和余振(带内、带外起伏),取决于WR()的旁瓣,旁瓣多,余振多;旁瓣相对值大,肩峰强,与N 无关。(决定于窗口形状)53N 增加,过渡带宽减小,肩峰值不变。因主瓣附近其中x=N/2,所以N 的改变不能改变主瓣与旁瓣的比例关系,只能改变WR()的绝对值大小和起伏的密度,当N 增加时,幅值变大,频率轴变密,而最大肩峰永远为8.95%,这种现象称为吉布斯(Gibbs)效应。肩峰值的大小决定了滤波器通带内的平稳程度

13、和阻带内的衰减,所以对滤波器的性能有很大的影响。54改变窗函数的形状,可改善滤波器的特性,窗函数有许多种,但要满足以下两点要求:窗谱主瓣宽度要窄,以获得较陡的过渡带;相对于主瓣幅度,旁瓣要尽可能小,使能量尽量集中在主瓣中,这样就可以减小肩峰和余振,以提高阻带衰减和通带平稳性。但实际上这两点不能兼得,一般总是通过增加主瓣宽度来换取对旁瓣的抑制。55几种常用的窗函数:1.矩形窗2.汉宁窗(升余弦窗)56三部分矩形窗频谱相加,使旁瓣互相抵消,能量集中在主瓣,旁瓣大大减小,主瓣宽度增加1倍,为。利用付氏变换的移位特性,汉宁窗频谱的幅度函数W()可用矩形窗的幅度函数表示为:57583.汉明窗(改进的升余

14、弦窗)它 是 对 汉 宁 窗 的 改 进,在 主 瓣 宽 度(对 应 第 一 零 点 的 宽 度)相 同 的 情 况 下,旁 瓣 进 一 步 减 小,可 使99.96%的 能 量 集 中在窗谱的主瓣内。4.布莱克曼窗(三阶升余弦窗)增 加 一 个 二 次 谐 波 余 弦 分 量,可 进 一 步 降 低 旁 瓣,但 主 瓣宽度进一步增加,为。增加N 可减少过渡带。频谱的幅度函数为:5960窗口函数的频谱N=51,A=20lg|W()/W(0)|四种窗函数的比较6162635.凯塞窗以上四种窗函数,都是以增加主瓣宽度为代价来降低旁瓣。凯塞窗则可自由选择主瓣宽度和旁瓣衰减。I0(x)是零阶修正贝塞尔

15、函数,参数 可自由选择,决定主瓣宽度与旁瓣衰减。越大,w(n)窗越窄,其频谱的主瓣变宽,旁瓣变小。一般取49。=5.44 接近汉明=8.5 接近布莱克曼=0 为矩形64零阶贝塞尔函数:过渡带宽At:阻带最小衰减65图2凯塞窗函数 图1零阶修正贝塞尔函数I0(x)x 016667用窗函数法设计FIR DF 的步骤:1)根据技术要求确定待求滤波器的单位取样响应 hd(n)当较为复杂时,不容易由反付里叶变换求得。这时一般可用离散解里叶变换代替连续付里叶变换,求得近似值:令hd(n)而当MN 时,hM(n)hd(n)682)根据对过渡带及阻带衰减的要求,选择窗函数的形式,并估计窗口长度N。原则是:在保

16、证阻带衰减满足要求的情况下,尽量选择主瓣窄的窗函数。3)计算DF 的单位取样响应h(n),h(n)w(n)hd(n)4)验算技术指标是否满足要求。1)由定义3)卷积若不满足,要根据具体情况重复2)3)4)步,直到满足要求。69设计一个线性相位FIR 低通DF,给定抽样频率通带截止频率为阻带截止频率为阻带衰减不小于50DB,幅度特性如图所示。例:707172737475幅度幅度归一化频率/归一化频率/(a)(b)凯塞窗设计举例76777879807.3 频率采样法工 程 上,常 给 定 频 域 上 的 技 术 指 标,所 以 采 用 频 域 设 计更直接。一、基本思想使 所 设 计 的FIR 数

17、 字 滤 波 器 的 频 率 特 性 在 某 些 离 散 频 率点 上 的 值 准 确 地 等 于 所 需 滤 波 器 在 这 些 频 率 点 处 的 值,在 其它频率处的特性则有较好的逼近。内插公式81二.设计方法1)确定2)计算3)计算82三、约束条件为了设计线性相位的FIR 滤波器,采样值H(k)要满足一定的约束条件。前已指出,具有线性相位的FIR 滤波器,其单位脉冲响应h(n)是实序列,且满足,由此得到的幅频和相频特性,就是对H(k)的约束。(表7.1.1)。例如,要设计第一类线性相位FIR 滤波器,令N 为奇数,h(n)偶对称,则幅度函数H()应具有偶对称性:83令则必须满足偶对称性

18、:而必须取为:同样,若要设计第二种线性相位FIR 滤波器,N 为偶数,h(n)偶对称,由于幅度特性是奇对称的,84因此,Hk 也必须满足奇对称性:相位关系同上,其它两种线性相位FIR 数字滤波器的设计,同样也要满足幅度与相位的约束条件。85设用理想低通作为希望设计的滤波器,截止频率为,采样点数N,和的计算公式如下:N=奇数时,N=偶数时,另外,对于高通和带阻,N 只能为奇数861)时域分析:由频域采样定理知道,四、误差分析872)频域分析:由或H(z)。由上述设计过程得到的与的逼近程度,以及与H(k)的关系?由88令,则89单位圆上的频响为:这是一个内插公式。90式中为内插函数令则91内插公式

19、表明:在每个采样点上,逼近误差为零,频响严格地与理想频响的采样值H(k)相等;在 采 样 点 之 间,频 响 由 各 采 样 点 的 内 插 函 数 延 伸 迭 加 而 形 成,因 而 有 一 定 的 逼 近 误 差,误 差 大 小 与 理 想 频 率 响 应 的 曲 线 形 状有 关,理 想 特 性 平 滑,则 误 差 小;反 之,误 差 大。在 理 想 频 率响应的不连续点附近,会产生肩峰和波纹。N 增大,则采样点变密,逼近误差减小。92图频率采样的响应93例:设计一个FIR 数字LP 滤波器,其理想特性为采样点数N=33,要求线性相位。解:根据P199 的表7.1.1,能设计低通线性相位

20、数字滤波器的只有1、2两种,因N 为奇数,所以只能选择第一种。即h(n)=h(N-1-n),幅频特性关于 偶对称,也即HK偶对称。利用HK的对称性,求 2 区间的频响采样值。94根据指标要求,在02 内有33个取样点,所以第k点对应频率为而截止频率0.5 位于之间,所以,k=0 8时,取样值为1;根据对称性,故k=25 32时,取样值也为1,因k=33 为下一周期,所以0 区间有9个值为1的采样点,2 区间有8个值为1的采样点,因此:95将代入内插公式,求H(ej):考虑到8k25 时Hk=0,而其它k时,Hk=1,令k=33-n,则969798从图上可以看出,其过渡带宽为一个频率采样间隔2/

21、33,而最小阻带衰减略小于20dB。对大多数应用场合,阻带衰减如此小的滤波器是不能令人满意的。增大阻带衰减三种方法:1)加宽过渡带宽,以牺牲过渡带换取阻带衰减的增加。例如在本例中可在k=9 和k=24 处各增加一个过渡带采样点H9=H24=0.5,使过渡带宽增加到二个频率采样间隔4/33,重新计算的H(ej)见图4.12(c),其阻带衰减增加到约-40dB。992)过渡带的优化设计根据H(ej)的表达式,H(ej)是Hk的线性函数,因此还可以利用线性最优化的方法确定过渡带采样点的值,得到要求的滤波器的最佳逼近(而不是盲目地设定一个过渡带值)。例如,本例中可以用简单的梯度搜索法来选择H9、H24

22、,使通带或阻带内的最大绝对误差最小化。要求使阻带内最大绝对误差达到最小(也即最小衰减达到最大),可计算得H9=0.3904。对应的H(ej)的幅频特性,比H9=0.5 时的阻带衰减大大改善,衰减约-50dB。如果还要进一步改善阻带衰减,可以进一步加宽过渡区,添上第二个甚至第三个不等于0的频率取样值,当然也可用线性最优化求取这些取样值。1003)增大N如 果 要 进 一 步 增 加 阻 带 衰 减,但 又 不 增 加 过 渡 带 宽,可 增加采样点数N。例 如,同 样 截 止 频 率c=0.5,以N=65 采 样,并 在k=17 和k=48插 入 由 阻 带 衰 减 最 优 化 计 算 得 到

23、的 采 样 值H17=H48=0.5886,在k=18、47处 插 入 经 阻 带 衰 减 最 优 化 计 算 获 得 的 采 样 值H17=H48=0.1065,这时得到的H(ej),过渡带为6/65,小 于33点 采 样 时 插 入 一 个 过 渡 带 采 样 点 的 过 渡 带 宽,而 阻带衰 减 增 加 了20多 分 贝,达-60dB以 上,当 然,代 价 是 滤 波 器 阶数增加,运算量增加。101小结:频率采样设计法优点:直接从频域进行设计,物理概念清楚,直观方便;适合于窄带滤波器设计,这时频率响应只有少数几个非零值。典型应用:用一串窄带滤波器组成多卜勒雷达接收机,覆盖不同的频段,

24、多卜勒频偏可反映被测目标的运动速度;缺点:截止频率难以控制。因频率取样点都局限在2/N 的整数倍点上,所以在指定通带和阻带截止频率时,这种方法受到限制,比较死板。充分加大N,可以接近任何给定的频率,但计算量和复杂性增加。1027.4 FIR 数字滤波器的最优化设计前 面 介 绍 了FIR 数 字 滤 波 器 的 两 种 逼 近 设 计 方 法,即 窗 口法(时 域 逼 近 法)和 频 率 采 样 法(频 域 逼 近 法),用 这 两 种 方法 设 计 出 的 滤 波 器 的 频 率 特 性 都 是 在 不 同 意 义 上 对 给 定 理 想 频率特性Hd(ej)的逼近。说 到 逼 近,就 有

25、一 个 逼 近 得 好 坏 的 问 题,对“好”“坏”的 恒 量 标 准 不 同,也 会 得 出 不 同 的 结 论,我 们 前 面 讲 过 的 窗口 法 和 频 率 采 样 法 都 是 先 给 出 逼 近 方 法,所 需 变 量,然 后 再 讨论 其 逼 近 特 性,如 果 反 过 来 要 求 在 某 种 准 则 下 设 计 滤 波 器 各 参数,以 获 取 最 优 的 结 果,这 就 引 出 了 最 优 化 设 计 的 概 念,最 优化 设 计 一 般 需 要 大 量 的 计 算,所 以 一 般 需 要 依 靠 计 算 机 进 行 辅助设计。103最优化设计的前提是最优准则的确定,在FIR

26、 滤波器最优化设计中,常用的准则有最小均方误差准则最大误差最小化准则。1)均方误差最小化准则,若以E(ej)表示逼近误差,则那么均方误差为104均方误差最小准则就是选择一组时域采样值,以使均方误差,这一方法注重的是在整个-频率区间内总误差的全局最小,但不能保证局部频率点的性能,有些频率点可能会有较大的误差,对于窗口法FIR 滤波器设计,因采用有限项的h(n)逼近理想的hd(n),所以其逼近误差为:如果采用矩形窗则有105可以证明,这是一个最小均方误差。所以,矩形窗窗口设计法是一个最小均方误差FIR 设计,根据前面的讨论,我们知道其优点是过渡带较窄,缺点是局部点误差大,或者说误差分布不均匀。2)

27、最大误差最小化准则(也叫最佳一致逼近准则)表示为其中F 是根据要求预先给定的一个频率取值范围,可以是通带,也可以是阻带。最佳一致逼近即选择N 个频率采样值(或时域h(n)值),在给定频带范围内使频响的最大逼近误差达到最小。也叫等波纹逼近。106优点:可保证局部频率点的性能也是最优的,误差分布均匀,相同指标下,可用最少的阶数达到最佳化。例如,我们提到的频率采样最优化设计,它是从已知的采样点数N、预定的一组频率取样和已知的一组可变的频率取样(即过渡带取样)出发,利用迭代法(或解析法)得到具有最小的阻带最大逼近误差(即最大的阻带最小衰减)的FIR 滤波器。但它只是通过改变过渡带的一个或几个采样值来调

28、整滤波器特性。如果所有频率采样值(或FIR 时域序列h(m))都可调整,显然,滤波器的性能可得到进一步提高。107窗函数法和频率采样法为使整个频域满足要求,平坦区域必将超过技术要求。所以,要引入一种新的设计方法,切比雪夫逼近法,它是一种等波纹逼近法,能使误差在整个频带均匀分布,对同样的技术指标,这种逼近法所需的滤波器阶数要低,而对于同样的滤波器阶数,这种逼近法的最大误差最小。108低通滤波器的误差分配109切比雪夫最佳一致逼近如图,用等波纹逼近法设计滤波器需要确定五个参数:M、p、r、1、2按上图所示的误差容限设计低通滤波器,就是说要在通带0 p内以最大误差1逼近1,在阻带r 内以最大误差2逼

29、近零。要同时确定上述五个参数较困难。常用的两种逼近方法:1)给定M、1、2,以p和r为变量。缺点:边界频率不能精确确定。2)给定M、p和r,以1和2为变量,通过迭代运算,使逼近误差1和2最小,并确定h(n)切比雪夫最佳一致逼近。110等波动逼近的低通滤波器pr 特点:能准确地指定通带和阻带边界频率。111一.误差函数定义逼近误差函数:为所设计的滤波器与理想滤波器的幅频特性在通带和阻带内的误差值,是已知的权函数,在不同频带可取不同的值,所要设计的滤波器的幅频特性理想滤波器的幅频特性112例如,希望在固定 M,p,r 的情况下逼近一个低通滤波器,这时有对于表4.1中的第一种滤波器,113于是切比雪

30、夫逼近问题变为,寻求一组系数使逼近误差的最大值达到最小,即给定后等效于求最小。114二.交替定理(最佳逼近定理)令F 表示闭区间的任意闭子集,为了使在F 上唯一最佳地逼近于,其充分必要条件是误差函数在F 上至少应有(M+2)次“交替”,即其中,且属于F。1)至少有M+2 个极值,且极值正负相间,具有等波纹的性质,2)由于是常数,所以的极值也就是的极值。115借助于低通滤波器的设计,可以直观地解释这个定理。这时,闭子集F 包括区间和。因为滤波器频响是逐段恒定的,所以对应于误差函数各峰值点的频率同样也对应于恰好满足误差容限时的频率。根据前面的讨论,在开区间内至多有M-1 个极值,此外,根据通带和阻

31、带的定义,令的约束条件为,再加上和 处的极值,误差曲线最多有M+1 个极值频率(交替)满足定理。116逼近方法:固定k、M、和,以作为参变量。按照交错定理,如果F 上的M+2 个极值点频率已知,则由(1)式可得到M+2 个方程:为极值点频率对应的误差函数值117注意:极值点频率必须位于和区间内。由于和固定,因而和必为这些极值频率中的一个,设,则应有求解上述方程组可得到全部系数。问题:1)实际情况下,M+2 个极值点频率未知;2)直接求解上述非线性方程组比较困难。雷米兹(Remez)算法给出了求解切比雪夫最佳一致逼近问题的方法。118雷米兹交替算法119三.雷米兹(Remez)算法1)在频率子集

32、F 上均匀等间隔地选取M+2 个极值点频率1202)由求和利用重心形式的拉格朗日插值公式,其中如在频带F 上,对所有频率都有,则为所求,即为极值点频率。1213)对上次确定的极值点频率中的每一点,在其附近检查是否在某一频率处有,如有,则以该频率点作为新的局部极值点。对M+2 个极值点频率依次进行检查,得到一组新的极值点频率。重复步骤1)、2),求出,完成一次迭代。重复上述步骤,直到的值改变很小,迭代结束,这个即为所求的最小值。由最后一组极值点频率求出,反变换得到,完成设计。优点:可准确确定;逼近误差均匀分布,相同指标下,滤波器所需阶数低。122有一些估算公式可用于决定最佳滤波器长度N:n 对于

33、窄带低通滤波器,对滤波器长度N 起主要作用:1231241250 200 400 600 800 1000120014001600 18002000-80-70-60-50-40-30-20-10010频率/Hz 幅度/dBRemez 交替法设计举例1267.5 IIR 与FIR 数字滤器的比较FIRFIRIIRIIR设计方法一 般 无 解 析 的 设 计 公 式,要 借助计算机程序完成利 用AF 的 成 果,可 简 单、有效地完成设计设计结果可得到幅频特性和线性相位(最大优点)只 能 得 到 幅 频 特 性,相 频 特 性 未 知(一 大 缺 点),如 需 要 线 性 相 位,须 用 全 通 网 络 校 准,但 增 加 滤 波 器阶数和复杂性稳定性 极 点 全 部 在 原 点(永 远 稳 定)无稳定性问题有稳定性问题阶数高结构 非递归 递归系统运算误差一般无反馈,运算误差小 有 反 馈,由 于 运 算 中 的 四 舍五入会产生极限环快速算法可用FFT 实现,减少运算量无快速运算方法低127作业n P.235q 1,2,4,q 13,15,16128

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁