《matlab车牌识别课程设计报告模板(附源代码).docx》由会员分享,可在线阅读,更多相关《matlab车牌识别课程设计报告模板(附源代码).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Matlab 程序设计任务书分院系学生姓名信息科学与工程专业学号设计题目车牌识别系统设计内容及要求:车牌定位系统的目的在于正确猎取整个图像中车牌的区域, 并识别出车牌号。通过设计实现车牌识别系统,能够提高学生分析问题和解决问题的力气,还能培育确定的科研力气。1. 牌照识别系统应包括车辆检测、图像采集、牌照识别等几局部。2. 当车辆检测局部检测到车辆到达时,触发图像采集单元,采集当前的视频图像。3. 牌照识别单元对图像进展处理,定位出牌照位置,再将牌照中的字符分割出来进展识别,然后组成牌照号码输出。进度安排:19 周:Matlab 环境生疏与根底学问学习19 周:课程设计选题与题目分析20 周:
2、程序设计编程实现20 周:课程设计验收与辩论指导教师签字:学院院长签字:年月日年月日1目录一课程设计目的3二设计原理3三具体设计步骤3四. 设计结果及分析18五. 总结19六. 设计体会20七. 参考文献212名目一、课程设计目的4二、设计原理4三、具体设计步骤41. 提出总体设计方案5(1牌照定位5(2) 牌照字符分割6(3) 牌照字符识别62.1 输入待处理的原始图像6%Step1 猎取图像装入待处理彩色图像并显示原始图像62.2 图像的灰度化72.3 对原始图像进开放操作得到图像背景图像82.4 灰度图像与背景图像作减法,对图像进展增加处理82.5 取得最正确阈值,将图像二值化92.6
3、边缘检测92.7 对得到图像作开操作进展滤波102.8 对二值图像进展区域提取,并计算区域特征参数。进展区域特征参数比较,提取车牌区域:.112.9 对水平投影进展峰谷分析132.10 计算车牌旋转角度142.11 去水平上下边框,猎取字符高度162.12 将计算计算猎取的字符图像与样本库进展匹配,自动识别出字符代码19五、总结21六、设计体会21七、参考文献223一、课程设计目的车牌定位系统的目的在于正确猎取整个图像中车牌的区域,并识别出车牌号。通过设计实现车牌识别系统,能够提高学生分析问题和解决问题的力气,还能培育确定的科研力气。二、设计原理:牌照自动识别是一项利用车辆的动态视频或静态图像
4、进展牌照号码、牌照颜色自动识别的模式识别技术。其硬件根底一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像推断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几局部。当车辆检测局部检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进展处理,定位出牌照位置,再将牌照中的字符分割出来进展识别, 然后组成牌照号码输出。三、具体设计步骤:41. 提出总体设计方案:牌照号码、颜色识别为了进展牌照识别,需要以下几
5、个根本的步骤: a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进展识别,最终组成牌照号码。牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别相互协作、相互验证。(1牌照定位:自然环境下,汽车图像背景简洁、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进展大范围相关搜寻,找到符合汽车牌照特征的假设干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最终选定一个最正确的区域作为牌照区域,并将其从图象中分割出来。流程图:导入原始图像图像预处理增加效果图像边缘
6、提取对图像开闭运算车牌定位5(2) 牌照字符分割 :完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进展识别。字符分割一般承受垂直投影法。由于字符在垂直方向上的投影必定在字符间或字符内的间隙处取得局部最小值的四周,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对简洁环境下的汽车图像中的字符分割有较好的效果。计算水平投影进行车牌水平校正去掉车牌的框架分析垂直投影找到每个字符中心位置按左右宽度切割出字符(3) 牌照字符识别 :字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据
7、库中模板的大小,然后与全部的模板进展匹配,最终选最正确匹配作为结果。基于人工神经元网络的算法有两种: 一种是先对待识别字符进展特征提取,然后用所获得特征来训练神经网络安排器;另一 种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。实际 应用中,牌照识别系统的识别率与牌照质量和拍摄质量亲热相关。牌照质量会受到各种 因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素 的影响。这些影响因素不同程度上降低了牌照识别的识别率,也正是牌照识别系统的困 难和挑战所在。为了提高识别率,
8、除了不断的完善识别算法,还应当想方法抑制各种光 照条件,使采集到的图像最利于识别。2. 切各割出模的块字的实现:符送入库中与数据库的图片相减字符依次分析显示误差最小的图片名字分析之差最小的图片是哪张2.1 输入待处理的原始图像:clear ; close all;%Step1 猎取图像装入待处理彩色图像并显示原始图像Scolor = imread(”3.jpg”);%imread 函数读取图像文件6图 2.1 原始图像2.2 图像的灰度化:彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低 系统的执行速度,因此在对图像进展识别等处理中常常将彩色图像转变为灰度图像,以 加快
9、处理速度。由彩色转换为灰度的过程叫做灰度化处理。选择的标准是经过灰度变换 后,像素的动态范围增加,图像的比照度扩展,使图像变得更加清楚、细腻、简洁识别。%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray 转换成灰度图figure,imshow(Sgray),title(”原始黑白图像”);图 2.2 原始黑白图像72.3 对原始图像进开放操作得到图像背景图像:s=strel(”disk”,13);%strei 函数Bgray=imopen(Sgray,s);%翻开 sgray s 图像figure,imshow(Bgray);title(”背景图像
10、”);%输出背景图像图 2.3 背景图像2.4 灰度图像与背景图像作减法,对图像进展增加处理:Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title(”增加黑白图像”);%输出黑白图像图 2.4 黑白图像82.5 取得最正确阈值,将图像二值化:二值图像是指整幅图像画面内仅黑、白二值的图像。在实际的车牌处理系统中,进展图像二值变换的关键是要确定适宜的阀值,使得字符与背景能够分割开来,二值变换的结果图像必需要具备良好的保形性,不丢掉有用的外形信息,不会产生额外的空缺等等。车牌识别系统要求处理的速度高、本钱低、信息量大,承受二值图
11、像进展处理,能大大地提高处理效率。阈值处理的操作过程是先由用户指定或通过算法生成一个阈值, 假设图像中某中像素的灰度值小于该阈值,则将该像素的灰度值设置为 0 或 255,否则灰度值设置为 255 或 0。fmax1=double(max(max(Egray);%egray 的最大值并输出双精度型fmin1=double(min(min(Egray);%egray 的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最正确阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);figure,imsh
12、ow(bw2);title(”图像二值化”);%得到二值图像图 2.5 二值图像2.6 边缘检测:两个具有不同灰度值的相邻区域之间总存在边缘,边缘就是灰度值不连续的结果, 是图像分割、纹理特征提取和外形特征提取等图像分析的根底。为了对有意义的边缘点进展分类,与这个点相联系的灰度级必需比在这一点的背景上变换更有效,我们通过门9限方法来打算一个值是否有效。所以,假设一个点的二维一阶导数比指定的门限大,我们就定义图像中的次点是一个边缘点,一组这样的依据事先定好的连接准则相连的边缘点就定义为一条边缘。经过一阶的导数的边缘检测,所求的一阶导数高于某个阈值,则确定该点为边缘点,这样会导致检测的边缘点太多。
13、可以通过求梯度局部最大值对应的点,并认定为边缘点,去除非局部最大值,可以检测出准确的边缘。一阶导数的局部最大值对应二阶导数的零穿插点,这样通过找图像强度的二阶导数的零穿插点就能找到准确边缘点。grd=edge(bw2,”canny”)%用 canny 算子识别强度图像中的边界figure,imshow(grd);title(”图像边缘提取”);%输出图像边缘图 2.6 像边缘提取2.7 对得到图像作开操作进展滤波:数学形态非线性滤波,可以用于抑制噪声,进展特征提取、边缘检测、图像分割等图像处理问题。腐蚀是一种消退边界点的过程,结果是使目标缩小,孔洞增大,因而可有效的消退孤立噪声点;膨胀是将与目
14、标物体接触的全部背景点合并到物体中的过程, 结果是使目标增大,孔洞缩小,可填补目标物体中的空洞,形成连通域。先腐蚀后膨胀的过程称为开运算,它具有消退细小物体,并在纤细处分别物体和平滑较大物体边界的作用;先膨胀后腐蚀的过程称为闭运算,具有填充物体内细小空洞,连接邻近物体和平滑边界的作用。对图像做了开运算和闭运算,闭运算可以使图像的轮廓线更为光滑,它通常用来消掉狭窄的连续和长细的鸿沟,消退小的孔洞,并弥补轮廓线中的断裂。bg1=imclose(grd,strel(”rectangle”,5,19);%取矩形框的闭运算figure,imshow(bg1);title(”图像闭运算5,19”);%输出
15、闭运算的图像10bg3=imopen(bg1,strel(”rectangle”,5,19);%取矩形框的开运算figure,imshow(bg3);title(”图像开运算5,19”);%输出开运算的图像bg2=imopen(bg3,strel(”rectangle”,19,1);%取矩形框的开运算figure,imshow(bg2);title(”图像开运算19,1”);%输出开运算的图像图 2.7.1 闭运算的图像图 2.7.2 开运算的图像图 2.7.3 开运算的图像2.8 对二值图像进展区域提取,并计算区域特征参数。进展区域特征参数比较,提取车 牌区域:a. 对图像每个区域进展标记,
16、然后计算每个区域的图像特征参数:区域中心位置、最小包含矩形、面积。L,num = bwlabel(bg2,8);%标注二进制图像中已连接的局部Feastats = imfeature(L,”basic”);%计算图像区域的特征尺寸Area=Feastats.Area;%区域面积11BoundingBox=Feastats.BoundingBox;%x y width height车牌的框架大小RGB = label2rgb(L, ”spring”, ”k”, ”shuffle”); %标志图像向 RGB 图像转换figure,imshow(RGB);title(”图像彩色标记”);%输出框架的
17、彩色图像图 2.8.1 彩色图像b. 计算出包含所标记的区域的最小宽和高,并依据先验学问,比较谁的宽高比更接近实际车牌宽高比,将更接近的提取并显示出来。计算矩形的宽度计算矩形的高度框架的宽度和高度的范围车牌的开头列车牌的开头行计算车牌长宽比猎取车牌二值子程序流程图图 2.8.2 灰度子图和二值子图122.9 对水平投影进展峰谷分析:对水平投影进展峰谷分析,计算出车牌上边框、车牌字符投影、车牌下边框的波形峰上升点、峰下降点、峰宽、谷宽、峰间距离、峰中心位置参数。histcol1=sum(sbw1);%计算垂直投影histrow=sum(sbw1);%计算水平投影figure,subplot(2,
18、1,1),bar(histcol1);title(”垂直投影含边框”);%输出垂直投影subplot(2,1,2),bar(histrow);title(”水平投影含边框”);%输出水平投影图 2.9.1 垂直投影和水平投影figure,subplot(2,1,1),bar(histrow); title(”水平投影含边框”);%输出水平投影subplot(2,1,2),imshow(sbw1);title(”车牌二值子图”);%输出二值图对水平投影进展峰谷分析:13求水平投影的平均值求水平投影的最小值取阈值计算谷宽度计算峰距离计算下降点找到峰中心位置图 2.9.2 水平投影和二值图程序流程图
19、2.10 计算车牌旋转角度:a. 车牌倾斜的缘由导致投影效果峰股谷不明显,在这里需要做车牌矫正处理。这里实行的线性拟合的方法,计算出车牌上边或下边图像值为 1 的点拟合直线与水平 X 轴的夹角。14标示出图像大小求最大宽度为字符检测上边从顶边至第一个峰下降点扫描从底边至最终一个峰的上升点扫描找第一个为 1 的点(2)线性拟合,计算与 x 夹角程序流程图fresult = fit(xdata”,ydata”,”poly1”);%poly1 表示一介拟合Y = p1*x+p2 p1=fresult.p1;angle=atan(fresult.p1)*180/pi; %弧度换为度,360/2pi,p
20、i=3.14 (3)旋转车牌图象subcol = imrotate(subcol1,angle,”bilinear”,”crop”); %旋转车牌图象sbw = imrotate(sbw1,angle,”bilinear”,”crop”);%旋转图像figure,subplot(2,1,1),imshow(subcol);title(”车牌灰度子图”);%输出车牌旋转后的灰度图像标题显示车牌灰度子图subplot(2,1,2),imshow(sbw);title(”);%输出车牌旋转后的灰度图像title(”车牌旋转角: ”,num2str(angle),”度” ,”Color”,”r”);%
21、显示车牌的旋转角度图 2.10.1 旋转后的灰度图像和旋转角度15b. 旋转车牌后重计算车牌水平投影,去掉车牌水平边框,猎取字符高度: histcol1=sum(sbw); %计算垂直投影histrow=sum(sbw”); %计算水平投影figure,subplot(2,1,1),bar(histcol1);title(”垂直投影旋转后”); subplot(2,1,2),bar(histrow);title(”水平投影旋转后”);图 2.10.2 垂直投影旋转后和水平投影旋转后 figure,subplot(2,1,1),bar(histrow);title(”水平投影旋转后”); sub
22、plot(2,1,2),imshow(sbw);title(”车牌二值子图旋转后”);图 2.10.3 水平投影旋转后和车牌二值子图旋转后2.11 去水平上下边框,猎取字符高度:a. 通过以上水平投影、垂直投影分析计算,获得了车牌字符高度、字符顶行与尾行、字符宽度、每个字符的中心位置,为提取分割字符具备了条件。maxhight=max(markrow2);findc=find(markrow2=maxhight);16rowtop=markrow(findc); rowbot=markrow(findc+1)-markrow1(findc+1);sbw2=sbw(rowtop:rowbot,:
23、);%子图为(rowbot-rowtop+1)行maxhight=rowbot-rowtop+1;%字符高度(rowbot-rowtop+1)b. 计算车牌垂直投影,去掉车牌垂直边框,猎取车牌及字符平均宽度histcol=sum(sbw2);%计算垂直投影 figure,subplot(2,1,1),bar(histcol);title(”垂直投影去水平边框后”);%输出车牌的垂直投影图像subplot(2,1,2),imshow(sbw2); %输出垂直投影图像title(”车牌字符高度: ”,int2str(maxhight),”Color”,”r”);%输出车牌字符高度%对垂直投影进展峰
24、谷分析求垂直投影的平均值求垂直投影的最小值取阈值计算字符上升点计算谷宽度 计算字符距离找到字符中心位置图 2.11 垂直投影图像和车牌字符高度程序流程图c.计算车牌上每个字符中心位置,计算最大字符宽度 maxwidth l=0;for k=1:n1markcol3(k)=markcol(k+1)-markcol1(k+1);%字符下降点markcol4(k)=markcol3(k)-markcol(k); %字符宽度上升点至下降点 markcol5(k)=markcol3(k)-double(uint16(markcol4(k)/2);%字符中心位置endmarkcol6=diff(markc
25、ol5); %字符中心距离字符中心点至下一个字符中心点17maxs=max(markcol6); %查找最大值,即为其次字符与第三字符中心距离findmax=find(markcol6=maxs);markcol6(findmax)=0;maxwidth=max(markcol6);%查找最大值,即为最大字符宽度d.提取分割字符,并变换为 22 行*14 列标准子图l=1;m2,n2=size(subcol); figure;for k=findmax-1:findmax+5cleft=markcol5(k)-maxwidth/2; cright=markcol5(k)+maxwidth/2-
26、2; if cleftn2cright=n2; cleft=n2-maxwidth;end SegGray=sbw(rowtop:rowbot,cleft:cright); SegBw1=sbw(rowtop:rowbot,cleft:cright);SegBw2 = imresize(SegBw1,22 14); %变换为 22 行*14 列标准子图subplot(2,n1,l),imshow(SegGray);if l=7title(”车牌字符宽度: ”,int2str(maxwidth),”Color”,”r”);end subplot(2,n1,n1+l),imshow(SegBw2)
27、;fname=strcat(”F:MATLABworksamimage”,int2str(k),”.jpg”);% 保 存 子图备选入样本库,并建立样本库imwrite(SegBw2,fname,”jpg”) l=l+1;end182.12 将计算计算猎取的字符图像与样本库进展匹配,自动识别出字符代码:进展车牌识别前需要使用样本对神经网络进展训练,然后使用训练好的网络对车牌进展识别。其具体流程为:使用汉字、字母、字母数字、数字四个样本分别对四个子网络进展训练,得到相应的节点数和权值。对已经定位好的车牌进展图像预处理,逐个的特征提取,然后从相应的文件中读取相应的节点数和权值,把车牌字符分别送入相
28、应的网络进展识别,输出识别结果。建立数据库样本与数据库中图片相减计算误差找到误差最小图片依次识别并识别程序流程图图 2.12 识别的车牌号码四、设计结果及分析原始图像:预处理后:车牌定位和提取:字符的分割和识别:19可以看出对于这个车牌,可以准确的识别。原始图像:预处理:车牌的定位和提取:字符的分割和识别:从上面结果可以看出,这张车牌的识别失败了,将 G 误识别为 B 了,K 误识为 A,0 识别为 8,这在识别中是格外简洁出错的地方,因此需要在其他方面做些弥补,最终到达识别效果。在车牌识别的过程中数字库的建立很重要 ,只有数字库的准确才能保证检测出来的数据正确。切割出来的数据要与数据库的数据
29、作比较,所以数据库的数据尤为重要。20五、总结:试验对车牌识别系统的软件局部进展了争论,分别从图像预处理、车牌定位、字符分割以及字符识别等方面进展了系统的分析。整理和总结了国内外在车牌定位、分割、字符识别方面的争论成果和进展方向,系统介绍了我国车牌的固有特征,以及车牌识别的特点。在车牌定位我们承受基于灰度跳变的定位方法,承受先对图像进展预处理,再进展二值化操作的方法。试验说明本方法既保存了车牌区域的信息,又削减了噪声的干扰,从而简化了二值化处理过程,提高了后续处理的速度。基于彩色重量的定位方法, 运用基于蓝色象素点统计特性的方法对车牌是蓝色的车牌进展定位,试验说明,用该方法实现的车牌定位准确率
30、较高。本设计用 MATLAB 编程运行结果可以得出,本设计承受的图像预处理、CANNY 边缘检测、开闭运算子5,19、车牌长宽比特征识别等对车牌的定位都是格外有效的,而本设计提出的二次水平投影分析和阈值技术有效检测了车牌图像的上下左右边框、旋转角度,准确实现的车牌字符的分割,对多个车牌进展试验,均有很高的正确率。本设计虽然只对蓝底白字车牌进展分割识别,对黑底白字车牌原则上整个算法可直接适用,对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进展调整, 并将图像反转0 变 1、1 变 0,而车牌字符的分割算法照旧行之有效。六、设计体会经过几周的奋战我的课程设计最终完成了。课程设计不仅是对前面所学学
31、问的一种检验,而且也是对自己力气的一种提高。以前老是觉得自己什么东西都不会,什么东西都不懂,而且又急于求成,结果造成什么都没学好,还是什么都不会。通过这次课程设计,我才明白学习是一个长期积存的过程,在以后的工作、生活中都应当不断的学习, 努力提高自己学问和综合素养,特别是对于我,根底比较差,确定不能太过于心急,要静下心来渐渐的争论。在这次课程设计中也使我们的同学关系更进一步了,同学之间相互帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解学问,所以在这里格外感谢帮助我的同学,我也明白学习不是埋头苦读书,而是合理的利用资源, 从同学那里,教师那里得到的有用的想法和信息,特别是网上有
32、很多很好的资料,对自己的自学力气也是很好的提高。我的心得也就这么多了,总之,不管学会的还是学不会的确实觉得困难比较多,真是万事开头难,不知道如何入手。最终最终做完了有种如释重负的感觉。此外,还得出一个结论:学问必需通过应用才能实现其价值!有些东西以21为学会了,但真正到用的时候才觉察是两回事,所以我认为只有到真正会用的时候才是真的学会了。也不能由于做出来就以为自己什么都懂了,在很多的地方还需要进一步的去学习和争论,就想这个课程设计虽然能实现车牌识别的功能,但是识别率还是还是格外低的,只是在理论上能行得通,根本不行能运用到商业上,因此在接下来的工作中, 应当去找更好的方法来提高识别率。以前对 M
33、ATLAB 也是仅局限在数学试验上学的那些学问,但是通过此次的课程设计,才了解到MATLAB 在图形图像处理方面的强大功能,这些事 C/C+不能所及的。在此要感谢我们的指导教师叶教师对我们悉心的指导,感谢教师给我们的帮助,以前我是不信任我能做出来的,是您的鼓舞让我重找到自信。在设计过程中,我通过查阅大量有关资料,与同学沟通阅历和自学,并向教师请教等方式,使自己学到了不少学问,也经受了不少艰辛,但收获同样巨大。在整个设计中我懂得了很多东西,也培育了我独立工作的力气,树立了对自己工作力气的信念,信任会对今后的学习工作生活有格外重要的影响。而且大大提高了动手的力气,使我充分体会到了在制造过程中探究的
34、困难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财宝,使我终身受益。七、参考文献:1 陈桂明、张明照、戚红雨.应用MATLAB语言处理数字信号与数字图像。科学出版社, 20232 霍宏涛.数字图像处理.机械工业出版社,2023.53 郁梅等,基于视觉的车辆牌照检测,计算机应用争论,1999(5),P65674 叶晨洲,廖金周,一种基于纹理的牌照图象二值化方法,微型电脑应用,1999(6), P28295 周妮娜、王敏、黄心汉、吕雪峰、万国红.车牌字符识别的预处理算法.计算机工程与应用,2023(15)6 杨万山等,基于BP 神经网络的工程图纸图形符号的识别,微型电脑应用,Vol.16, No.2,20237 王年、李婕、任彬、汪炳权.多层次汽车车牌照定位分割方法. 安徽大学学报, 1999(6)Vol.23.No.28 崔 江、王友仁.车牌自动识别方法中的关键技术争论.计算机测量与把握, 2023.11(4)9 许志影、李晋平.MATLAB极其在图像处理中的应用.计算机与现代化,2023(4)22