《高考物理一轮复习 高考AB卷 专题六 机械能-人教版高三全册物理试题.doc》由会员分享,可在线阅读,更多相关《高考物理一轮复习 高考AB卷 专题六 机械能-人教版高三全册物理试题.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、专题六机械能A卷全国卷 功和功率1.(2015新课标全国,17,6分)(难度)一汽车在平直公路上行驶。从某时刻开始计时,发动机的功率P随时间t的变化如图所示。假定汽车所受阻力的大小f恒定不变。下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()解析当汽车的功率为P1时,汽车在运动过程中满足P1F1v,因为P1不变,v逐渐增大,所以牵引力F1逐渐减小,由牛顿第二定律得F1fma1,f不变,所以汽车做加速度减小的加速运动,当F1f时速度最大,且vm。当汽车的功率突变为P2时,汽车的牵引力突增为F2,汽车继续加速,由P2F2v可知F2减小,又因F2fma2,所以加速度逐渐减小,直到F2f时,
2、速度最大vm,以后匀速运动。综合以上分析可知选项A正确。答案A2(2014新课标全国,16,6分)(难度)一物体静止在粗糙水平地面上。现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v。若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v。对于上述两个过程,用WF1、WF2分别表示拉力F1、F2所做的功,Wf1、Wf2分别表示前后两次克服摩擦力所做的功,则()AWF24WF1,Wf22Wf1 BWF24WF1,Wf22Wf1CWF24WF1,Wf22Wf1 DWF24WF1,Wf22Wf1解析根据xt得两过程的位移关系x1x2,根据加速度的定义a得两过程的加速度关
3、系为a1。由于在相同的粗糙水平地面上运动,故两过程的摩擦力大小相等,即Ff1Ff2Ff,根据牛顿第二定律得,F1Ff1ma1,F2Ff2ma2,所以F1F2Ff,即F1。根据功的计算公式WFl,可知Wf1Wf2,WF1WF2,故选项C正确,选项A、B、D错误。答案C3(2013全国新课标卷)(难度)(多选)2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功,图甲为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图。飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止。某次降落,以飞机着舰为计时零点,飞机在t0.
4、4 s时恰好钩住阻拦索中间位置,其着舰到停止的速度时间图线如图乙所示。假如无阻拦索,飞机从着舰到停止需要的滑行距离约为 1000 m。已知航母始终静止,重力加速度的大小为g。则()甲乙A从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的1/10B在0.42.5 s时间内,阻拦索的张力几乎不随时间变化C在滑行过程中,飞行员所承受的加速度大小会超过2.5gD在0.42.5 s时间内,阻拦系统对飞机做功的功率几乎不变解析在vt图象中,曲线与坐标轴所围成的“面积”表示物体运动位移的大小,根据题目给的图象可以大致判断x100 m,而题目中说若无阻拦索飞机从着舰到停止要滑行1 000 m,故A正确;由图
5、象知,0.42.5 s内飞机做匀减速运动,加速度不变,故所受合外力不变,合外力为两段阻拦索拉力的合力,由于阻拦索夹角变小,故阻拦索的张力随时间减小,故B错误;由图象可知在0.42.5 s内,a m/s226.2 m/s22.5g,故C正确;由于PF合v,F合不变,v减小,故功率减小,D错误。答案AC 动能定理及其应用4.(2016全国卷,20,6分)(难度)(多选)如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P。它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W。重力加速度大小为g。设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为
6、N,则()Aa BaCN DN解析质点P下滑过程中,重力和摩擦力做功,根据动能定理可得mgRWmv2,根据公式a,联立可得a,A正确,B错误;在最低点重力和支持力的合力充当向心力,根据牛顿第二定律可得,Nmgma,代入可得,N,C正确,D错误。答案AC5(2016全国卷,21,6分)(难度)(多选)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连。现将小球从M点由静止释放,它在下降的过程中经过了N点。已知在M、N两点处,弹簧对小球的弹力大小相等,且ONMOMN。在小球从M点运动到N点的过程中()A弹力对小球先做正功后做负功B有两个时刻小球的加速度等于重力加速度C弹簧长度最短
7、时,弹力对小球做功的功率为零D小球到达N点时的动能等于其在M、N两点的重力势能差解析因M和N两点处弹簧对小球的弹力大小相等,且ONMOMNMg4l要使P仍能沿圆轨道滑回,P在圆轨道的上升高度不能超过半圆轨道的中点C。由机械能守恒定律有MvB2MglEpMvB2Mg4l联立式得mMm答案(1)2l(2)mMhB,则可能有WAWBChAhB,则一定有WAWB解析两绳子中点被提升从而使绳子全部离开地面,考虑此时绳子重心上升的高度,绳子的重心在距离绳子中点1/4总长处。若绳子总长分别为lA和lB,则细绳A重心上升的高度hAhA,细绳B重心上升的高度hBhB。根据Wmgh可得:WAWBmg(hAhB)m
8、g(hAhB)(lAlB)。由题意lAlB,故A、C、D错误,B正确。答案B 动能定理及其应用4.(2015浙江理综,18,6分)(难度)(多选)我国科学家正在研制航母舰载机使用的电磁弹射器。舰载机总质量为3.0104 kg,设起飞过程中发动机的推力恒为1.0105 N;弹射器有效作用长度为100 m,推力恒定。要求舰载机在水平弹射结束时速度大小达到80 m/s。弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则()A弹射器的推力大小为1.1106 NB弹射器对舰载机所做的功为1.1108 JC弹射器对舰载机做功的平均功率为8.8107 WD舰载机在弹射过程中
9、的加速度大小为32 m/s2解析设总推力为F,位移x,阻力F阻20%F,对舰载机加速过程由动能定理得Fx20%Fxmv2,解得F1.2106 N,弹射器推力F弹FF发1.2106 N1.0105 N1.1106 N,A正确;弹射器对舰载机所做的功为WF弹x1.1106100 J1.1108 J,B正确;弹射器对舰载机做功的平均功率F弹4.4107 W,C错误;根据运动学公式v22ax,得a32 m/s2,D正确。答案ABD5(2014大纲全国,19,6分)(难度)一物块沿倾角为的斜坡向上滑动。当物块的初速度为v时,上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速
10、度大小为g。物块与斜坡间的动摩擦因数和h分别为()Atan 和 B(1)tan 和Ctan 和 D(1)tan 和解析由动能定理有mgHmgcos 0mv2mghmgcos 0m()2解得(1)tan ,h,故D正确。答案D6(2016天津理综,10,16分)(难度)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一,如图所示,质量m60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a3.6 m/s2匀加速滑下,到达助滑道末端B时速度vB24 m/s,A与B的竖直高度差H48 m,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以
11、O为圆心的圆弧。助滑道末端B与滑道最低点C的高度差h5 m,运动员在B、C间运动时阻力做功W1 530 J,取g10 m/s2。(1)求运动员在AB段下滑时受到阻力Ff的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大。解析(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,则有v2ax由牛顿第二定律有mgFfma联立式,代入数据解得Ff144 N(2)设运动员到达C点时的速度为vC,在由B到达C的过程中,由动能定理得mghWmvmv设运动员在C点所受的支持力为FN,由牛顿第二定律有FNmgm由题意和牛顿第三定律知FN6mg联立式,代入数
12、据解得R12.5 m答案(1)144 N(2)12.5 m7.(2015海南单科,14,13分)(难度)如图,位于竖直平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点。已知h2 m,s m。取重力加速度大小g10 m/s2。(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小。解析(1)一小环在bc段轨道运动时,与轨道之间无相互作用力,则说明下落到b点时的速度水平,小环做平抛运动的轨迹与轨道bc重合,故有sv0thgt2在ab
13、滑落过程中,根据动能定理可得mgRmv联立三式可得R0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mghmv因为物体滑到c点时与竖直方向的夹角等于(1)问中做平抛运动过程中经过c点时速度与竖直方向的夹角相等,设为,则根据平抛运动规律可知sin 根据运动的合成与分解可得sin 联立可得v水平 m/s。答案(1)0.25 m(2) m/s8(2015山东理综,23,18分)(难度)如图甲所示,物块与质量为m的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接。物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l。开始时物块和小球均静止,将此时传感装置的示
14、数记为初始值。现给小球施加一始终垂直于l段细绳的力、将小球缓慢拉起至细绳与竖直方向成60角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍。不计滑轮的大小和摩擦,重力加速度的大小为g。求:(1)物块的质量;(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功。解析(1)设开始时细绳的拉力大小为T1,传感装置的初始值为F1,物块质量为M,由平衡条件得对小球,T1mg对物块,F1T1Mg当细绳与竖直方向的夹角为60时,设细绳的拉力大小为T2,传感装置的示数为F2,据题意可知,F21.25F1,由平衡条件得对小球
15、,T2mgcos 60对物块,F2T2Mg联立式,代入数据得M3m(2)设小球运动至最低位置时速度的大小为v,从释放到运动至最低位置的过程中,小球克服阻力所做的功为Wf,由动能定理得mgl(1cos 60)Wfmv2在最低位置,设细绳的拉力大小为T3,传感装置的示数为F3,据题意可知,F30.6F1,对小球,由牛顿第二定律得T3mgm对物块,由平衡条件得F3T3Mg联立式,代入数据得Wf0.1mgl答案(1)3m(2)0.1mgl9(2015重庆理综,8,16分)(难度)同学们参照伽利略时期演示平抛运动的方法制作了如图所示的实验装置,图中水平放置的底板上竖直地固定有M板和N板。M板上部有一半径
16、为R的圆弧形的粗糙轨道,P为最高点,Q为最低点,Q点处的切线水平,距底板高为H。N板上固定有三个圆环。将质量为m的小球从P处静止释放,小球运动至Q飞出后无阻碍地通过各圆环中心,落到底板上距Q水平距离为L处,不考虑空气阻力,重力加速度为g。求:(1)距Q水平距离为的圆环中心到底板的高度;(2)小球运动到Q点时速度的大小以及对轨道压力的大小和方向;(3)摩擦力对小球做的功。解析(1)小球在Q点处的速度为v0,从Q到距Q水平距离为的圆环中心处的时间为t1,落到底板上的时间为t,距Q水平距离为的圆环中心到底板的高度为h,由平抛运动规律得Lv0tv0t1Hgt2Hhgt联立式解得hH(2)联立式解得v0
17、L在Q点处对球由牛顿第二定律得FNmg联立式解得FNmg(1)由牛顿第三定律得小球对轨道的压力大小为FNFNmg(1)方向竖直向下(3)从P到Q对小球由动能定理得mgRWfmv联立式解得Wfmg(R)答案(1)H(2)Lmg(1),方向竖直向下(3)mg(R) 机械能守恒定律及其应用10.(2015四川理综,1,6分)(难度)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A一样大 B水平抛的最大C斜向上抛的最大 D斜向下抛的最大解析由机械守恒定律mghmvmv知,落地时速度v2的大小相等,故A正确。答案A11(2014上海单
18、科,11,3分)(难度)静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力。不计空气阻力,在整个上升过程中,物体机械能随时间变化关系是()解析以地面为零势能面,以竖直向上为正方向,则对物体,在撤去外力前,有Fmgma,hat2,某一时刻的机械能EEFh,解以上各式得Et2t2,撤去外力后,物体机械能守恒,故只有C正确。答案C12(2016江苏单科,14,16分)(难度)如图所示,倾角为的斜面A被固定在水平面上,细线的一端固定于墙面,另一端跨过斜面顶端的小滑轮与物块B相连,B静止在斜面上。滑轮左侧的细线水平,右侧的细线与斜面平行。A、B的质量均为m,撤去固定A的装置后,A、B均做直
19、线运动,不计一切摩擦,重力加速度为g。求:(1)A固定不动时,A对B支持力的大小N;(2)A滑动的位移为x时,B的位移大小s;(3)A滑动的位移为x时的速度大小vA。解析(1)支持力的大小Nmgcos (2)根据几何关系sxx(1cos ),syxsin 且s解得sx(3)B的下降高度syxsin 根据机械能守恒定律mgsymvmv根据速度的定义得vA,vB则vBvA解得vA答案(1)mgcos (2)x (3) 功能关系能量守恒定律13.(2016四川理综,1,6分)(难度)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员。他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,
20、重力对他做功1 900 J,他克服阻力做功100 J。韩晓鹏在此过程中()A动能增加了1 900 JB动能增加了2 000 JC重力势能减小了1 900 J D重力势能减小了2 000 J解析由题可得,重力做功WG1 900 J,则重力势能减少1 900 J ,故C正确,D错误;由动能定理得,WGWfEk,克服阻力做功Wf100 J,则动能增加1 800 J,故A、B错误。答案C14(2014广东理综,16,4分)(难度)如图是安装在列车车厢之间的摩擦缓冲器结构图,图中和为楔块,和为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中()A缓冲器的机械能守恒B摩擦力做功消耗机械
21、能C垫板的动能全部转化为内能D弹簧的弹性势能全部转化为动能解析在弹簧压缩过程中,由于摩擦力做功消耗机械能,因此机械能不守恒,选项A错、B对;垫板的动能转化为弹性势能和内能,选项C、D均错误。答案B15(2014福建理综,18,6分)(难度)如图,两根相同的轻质弹簧,沿足够长的光滑斜面放置,下端固定在斜面底部挡板上,斜面固定不动。质量不同、形状相同的两物块分别置于两弹簧上端。现用外力作用在物块上,使两弹簧具有相同的压缩量;若撤去外力后,两物块由静止沿斜面向上弹出并离开弹簧,则从撤去外力到物块速度第一次减为零的过程,两物块()A最大速度相同 B最大加速度相同C上升的最大高度不同 D重力势能的变化量
22、不同解析下图为物块能向上弹出且离开弹簧,则物块在刚撤去外力时加速度最大,由牛顿第二定律得:kxmgsin ma,即agsin ,由于两物块k、x、均相同,m不同,则a 不同,B错误;当mgsin kx0即x0时,速度最大,如图,设两物块质量m1m2,其平衡位置分别为O1、O2,初始位置为O,则从O至O2的过程中,由W弹WGEk及题意知,W弹相同,WG1WG2,故Ek1Ek2,即v1v2,而此时m2的速度v2已达最大,此后,m1的速度将继续增大直至最大,而m2的速度将减小,故一定是质量小的最大速度大,A错误;从开始运动至最高点,由Epmgh及题意知重力势能的变化量Epmgh相同,m不同,h也不同
23、,故C正确,D错误。答案C16(2015福建理综,21,19分)(难度)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点。一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g。(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车。已知滑块质量m,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为,求:滑块运动过程中,小车的最大速度大小vm;滑块从B到C运动过程中,小车的位移大小s。解析(1)滑块滑到B点时对小车压力最大,从A到B机械能守恒mgRmv滑块在B点处,由牛顿第二定律知Nmgm解得N3mg由牛顿第三定律知N3mg方向竖直向下(2)滑块下滑到达B点时,小车速度最大。由机械能守恒mgRMvm(2vm)2解得vm设滑块运动到C点时,小车速度大小为vC,由功能关系mgRmgLMvm(2vC)2设滑块从B到C过程中,小车运动加速度大小为a,由牛顿第二定律mgMa由运动学规律vv2as解得sL答案(1)3mg方向竖直向下(2)L