《届九年级数学上学期期中考试题(无答案) 试题.doc》由会员分享,可在线阅读,更多相关《届九年级数学上学期期中考试题(无答案) 试题.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、江西省吉安市朝宗实验学校2012届九年级上学期期中考试数学试卷一、选择题(只有一个正确答案,每小题3分,共30分)1、如图,由1=2,BC=DC,AC=EC,得ABCEDC的根据是( )A、SAS B、ASA C、AAS D、SSS2、下列四幅图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是( )3、关于x的一元二次方程有一个根为0,则的值是( )A、1 B、1 C、1 D、0 4、在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在ABC的( )A、三边中线的交点 B
2、、三条角平分线的交点 C、三边上高的交点 D、三边中垂线的交点5、不能判定四边形ABCD是平行四边形的条件是( )A、A=C B=D B、ABCD AD=BC C、ABCD A=C D、ABCD AB=CD 6、用配方法解方程2x2+4x+1=0,配方后的方程是( )A、B、C、 D、7、反比例函数与直线相交于点A,A点的横坐标为1,则此反比例函数的解析式为( )A B C D8如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )xyOA9、如果顺次连接一个四边形各边中点所得新的四边形是菱形,那么对这个
3、四边形的形状描述最准确的是( )A、矩形 B、等腰梯形 C、菱形 D、对角线相等的四边形10、如图,反比例函数和正比例函数的图像都经过点,若,则的取值范围是( )第10题图A. B. C. 或 D. 或二、填空题(每小题3分,共24分) 11、方程:的解为:_。ABCD12、若直角三角形中两边的长分别是3cm和5cm,则斜边上的中线长是 13、如图,已知ACB =BDA = 90o,要使ABCBAD,还需要添加一个条件,这个条件可以是_或BADFHGEC_或_或_14、已知关于x的一元二次方程mx2-10x+5=0有实数根,则m的取值范围是 。15、如图,边长为3的正方形ABCD绕点C按顺时针
4、方向旋转30得到正方形EFCG,EF交AD于点H,那么DH的长为 ABOxy16、如图,A为图象上一点,AB垂直轴于B点,若SAOB3,则的值为 。 17、如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B时,人影的长度减少 m.18、如右图,在矩形ABCD中,AC、BD相交于O,AE平分BAD 交BC于E,连接EO,若CAE=15则BOE的度数是 。三、简单解答题:(共66分)19、解下列方程:(每小题4分,共8分)DEACB (1)、 (2)、3x2+2(x-1)=0 20、(6分)已知,如图,AB和DE是直立在地面上的两根立柱.
5、AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21、(6分)设方程x2+2x-5=0的两个实数根为x1、x2,求的值.22、(7分)如图,在平行四边形中,为的中点,连接并延长交的延长线于点。 (1)求证:;第22题图(2)当与满足什么数量关系时,四边形是矩形,请说明理由23.(8分)如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点, 且点A的横坐标和点B的纵坐标都是-2,求: (1)一次函数的解析式; (2)求AOB的面积. 24、(9分)某
6、商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每件提价1元出售,其销售量就减少20件现在要获利12000元,且销售成本不超过24000元,问这种服装销售单价应定多少为宜?这时应进多少件服装?25、(10分)如图10,正方形ABCD边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H(1)求证:BCGDCE;BHDE(2)当点G运动到什么位置时,BH垂直平分DE?请说明理由26、(12分)如图,在ABC中,ACB90,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AFCE。(1)求证:四边形ACEF是平行四边形;(2)当B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?