《高考物理总复习 第六章 碰撞与动量守恒 第二节 动量守恒定律 碰撞 爆炸 反冲测试题-人教版高三全册物理试题.doc》由会员分享,可在线阅读,更多相关《高考物理总复习 第六章 碰撞与动量守恒 第二节 动量守恒定律 碰撞 爆炸 反冲测试题-人教版高三全册物理试题.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二节动量守恒定律碰撞爆炸反冲学生用书P112【基础梳理】一、动量守恒定律1守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒2动量守恒定律的表达式:m1v1m2v2m1v1m2v2或p1p2.二、碰撞爆炸反冲1碰撞(1)碰撞现象:物体间的相互作用持续时间很短,而物体间相互作用力很大的现象(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒(3)分类动量是否守恒机械能是否守恒弹性碰撞守恒守恒
2、非弹性碰撞守恒有损失完全非弹性碰撞守恒损失最大2.爆炸现象:爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒3反冲运动(1)物体在内力作用下分裂为两个不同部分并且这两部分向相反方向运动的现象(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理【自我诊断】 判一判(1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒()(2)动量守恒只适用于宏观低速()(3)当系统动量不守恒时无法应用动量守恒定律解题()(4)物体相互作用时动量守恒,但机械能不一定守恒()(5)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相同()(6)飞船做圆周运动时,
3、若想变轨通常需要向前或向后喷出气体,该过程中动量守恒()提示:(1)(2)(3)(4)(5)(6) 做一做(2018安徽名校联考)如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是()A男孩和木箱组成的系统动量守恒B小车与木箱组成的系统动量守恒C男孩、小车与木箱三者组成的系统动量守恒D木箱的动量增量与男孩、小车的总动量增量不相同提示:选C.当把男孩、小车与木箱看做整体时水平方向所受的合外力才为零,所以选项C正确 想一想碰撞过程除了系统动量守恒之外,还需要满足什么条件?碰撞与爆炸在能量转化方面有何不同?提示:碰撞过程除了系
4、统动量守恒之外,还要满足的条件:系统动能不增加;碰撞结果要符合实际情况碰撞系统动能不增加,而爆炸系统动能增加,这是二者最大的不同对动量守恒定律的理解和应用学生用书P113【知识提炼】1动量守恒定律常用的四种表达形式(1)pp:即系统相互作用前的总动量p和相互作用后的总动量p大小相等,方向相同(2)ppp0:即系统总动量的增加量为零(3)p1p2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量(4)m1v1m2v2m1v1m2v2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等2动量守恒定律的“五性”矢量性动量守恒定律的表达式为矢
5、量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(没有特殊说明要选地球这个参考系)如果题设条件中各物体的速度不是相对同一参考系时,必须转换成相对同一参考系的速度同时性动量是一个瞬时量,表达式中的p1、p2必须是系统中各物体在相互作用前同一时刻的动量,p1、p2必须是系统中各物体在相互作用后同一时刻的动量,不同时刻的动量不能相加系统性研究的对象是相互作用的两个或多个物体组成的系统,而不是其中的一个物体,更不能题中有几个物体就选几个物体普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统【典题例析】(2016高考全国卷)如图,光滑冰
6、面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上某时刻小孩将冰块以相对冰面 3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h0.3 m(h小于斜面体的高度)已知小孩与滑板的总质量为m130 kg,冰块的质量为m210 kg,小孩与滑板始终无相对运动取重力加速度的大小g10 m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?审题指导在人与冰块分离、冰块与斜面体作用过程中水平方向都满足动量守恒条件,结合能量守恒可得出三者之间的速度关系解析(1)规定向右为速度正方向冰块在斜面体上运动到最大高度时
7、两者达到共同速度,设此共同速度为v,斜面体的质量为m3,由水平方向动量守恒和机械能守恒定律得m2v20(m2m3)vm2v(m2m3)v2m2gh式中v203 m/s为冰块推出时的速度,联立式并代入题给数据得m320 kg.(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1m2v200代入数据得v11 m/s设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v20m2v2m3v3m2vm2vm3v联立式并代入数据得v21 m/s由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩答案(1)20 kg(2)见解析1应用动量守恒定
8、律的解题步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒)(3)规定正方向,确定初末状态动量(4)由动量守恒定律列出方程(5)代入数据,求出结果,必要时讨论说明2爆炸现象的三个规律(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒 (2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加(3)位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆
9、炸前的位置以新的动量开始运动3“人船模型”:若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m11m22得m1x1m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒(2)构成系统的两物体原来静止,因相对作用而反向运动(3)x1、x2均为沿动量方向相对于同一参考系的位移【迁移题组】 迁移1动量守恒的条件判断1.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统()A动量
10、守恒,机械能守恒B动量不守恒,机械能守恒C动量守恒,机械能不守恒D无法判定动量、机械能是否守恒解析:选C.动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒机械能守恒的条件是除重力、弹力对系统做功外,其他力对系统不做功,本题中子弹射入木块瞬间有部分机械能转化为内能(发热),所以系统的机械能不守恒,故C正确,A、B、D错误 迁移2人船模型2.如图所示,长为l,质量为m的小船停在静水中,一个质量为m的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,小船对地的位移是多少?解析:人和小船组成的系统
11、在水平方向不受外力,动量守恒假设某一时刻小船和人对地的速度分别为v1、v2,以人的速度方向为正方向,由于原来处于静止状态,因此0mv2mv1,即mv2mv1由于相对运动过程中的任意时刻,人和小船的速度都满足上述关系,故他们在这一过程中平均速率也满足这一关系,即m 2m1,等式两边同乘运动的时间t,得m 2tm1t,即mx2mx1又因x1x2l,因此有x1.答案: 迁移3子弹打木块模型3(多选)如图所示,质量为m的子弹水平射入质量为M、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J,那么此过程中系统产生的内能可能为()A16 JB1
12、1.2 JC4.8 J D3.4 J解析:选AB.法一:设子弹的初速度为v0,与木块的共同速度为v,则由动量守恒定律有mv0(Mm)v;系统产生的内能Qfdmv(mM)v2,木块得到的动能为Ek1fsMv2,其中,f为子弹与木块间的摩擦力,d为子弹在木块内运动的位移,s为木块相对于地面运动的位移,变形可得QEk1Ek1,故选项A、B正确法二:本题也可用图象法,画出子弹和木块的vt图象如图所示,根据vt图象与坐标轴所围面积表示位移,OAt的面积表示木块的位移s,OAv0的面积表示子弹相对木块的位移d,系统产生的内能Qfd,木块得到的动能Ek1fs,从图象中很明显可以看出ds,故系统产生的内能大于
13、木块得到的动能 迁移4弹簧模型4.如图所示,滑块A、B的质量分别为m1与m2,m1m2,由轻质弹簧相连接,置于水平的气垫导轨上用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧,两滑块一起以恒定的速度v0向右滑动,突然,轻绳断开当弹簧伸长至本身的自然长度时,滑块A的速度正好为零,问在以后的运动过程中,滑块B是否会有速度等于零的时刻?试通过定量分析,证明你的结论解析:当弹簧处于压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和当弹簧伸长到其自然长度时,弹性势能为零,因这时滑块A的速度为零,故系统的机械能等于滑块B的动能设这时滑块B的速度为v,则有Em2v2由动量守恒定律得(m1m2
14、)v0m2v解得E假定在以后的运动中,滑块B可以出现速度为零的时刻,并设此时滑块A的速度为v1,这时,不论弹簧是处于伸长状态还是压缩状态,都具有弹性势能Ep.由机械能守恒定律得m1vEp根据动量守恒得(m1m2)v0m1v1求出v1,代入式得Ep因为Ep0,故得即m1m2,与已知条件m1v前,否则无法实现碰撞碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v前v后,否则碰撞没有结束如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零2碰撞模型类型(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒以质量
15、为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,有m1v1m1v1m2v2m1vm1vm2v解得v1,v2结论:当两球质量相等时,v10,v2v1,两球碰撞后交换了速度当质量大的球碰质量小的球时,v10,v20,碰撞后两球都沿速度v1的方向运动当质量小的球碰质量大的球时,v10,碰撞后质量小的球被反弹回来撞前相对速度与撞后相对速度大小相等(2)完全非弹性碰撞撞后共速有动能损失,且损失最多【典题例析】(2015高考全国卷)如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间A的质量为m,B、C的质量都为M,三者均处于静止状态现使A以某一速度向右运动,求
16、m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞设物体间的碰撞都是弹性的审题指导由于是弹性碰撞,则同时满足动量守恒和机械能守恒,并且物体间碰后速度还要满足实际情况,即前面的速度大于后面的速度解析A向右运动与C发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒设速度方向向右为正,开始时A的速度为v0,第一次碰撞后C的速度为vC1,A的速度为vA1.由动量守恒定律和机械能守恒定律得mv0mvA1MvC1mvmvMv联立式得vA1 v0vC1 v0如果mM,第一次碰撞后,A与C速度同向,且A的速度小于C的速度,不可能与B发生碰撞;如果mM,第一次碰撞后,A停止,C以A碰前的速度向右运动
17、,A不可能与B发生碰撞;所以只需考虑mM的情况第一次碰撞后,A反向运动与B发生碰撞设与B发生碰撞后,A的速度为vA2,B的速度为vB1,同样有vA2 vA1v0根据题意,要求A只与B、C各发生一次碰撞,应有vA2vC1联立式得m24mMM20解得m(2)M另一解m(2)M舍去所以,m和M应满足的条件为(2)Mmmgl即设在a、b发生弹性碰撞前的瞬间,a的速度大小为v1,由能量守恒定律有mvmvmgl设在a、b碰撞后的瞬间,a、b的速度大小分别为v1、v2,由动量守恒定律和能量守恒定律有mv1mv1v2mvmvv联立式解得v2v1由题意,b没有与墙发生碰撞,由功能关系可知vgl联立式,可得联立式
18、,可得a与b发生弹性碰撞,但b没有与墙发生碰撞的条件为.答案: 迁移3非弹性碰撞的分析3(多选)(2018宁夏银川模拟)A、B两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a、b分别为A、B两球碰前的位移随时间变化的图象,c为碰撞后两球共同运动的位移随时间变化的图象,若A球质量是m2 kg,则由图判断下列结论正确的是()A碰撞前、后A球的动量变化量为4 kgm/sB碰撞时A球对B球所施的冲量为4 NsCA、B两球碰撞前的总动量为3 kgm/sD碰撞中A、B两球组成的系统损失的动能为10 J解析:选ABD.根据题图可知,碰前A球的速度vA3 m/s,碰前B球的速度v
19、B2 m/s,碰后A、B两球共同的速度v1 m/s,故碰撞前、后A球的动量变化量为pAmvmvA4 kgm/s,选项A正确;A球的动量变化量为4 kgm/s,碰撞过程中动量守恒,B球的动量变化为4 kgm/s,根据动量定理,碰撞过程中A球对B球所施的冲量为4 Ns,选项B正确;由于碰撞过程中动量守恒,有mvAmBvB(mmB)v,解得mB kg,故碰撞过程中A、B两球组成的系统损失的动能为EkmvmBv(mmB)v210 J,选项D正确;A、B两球碰撞前的总动量为pmvAmBvB(mmB)v kgm/s,选项C错误 迁移4爆炸与反冲模型4(2017高考全国卷)将质量为1.00 kg的模型火箭点
20、火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A30 kgm/sB5.7102 kgm/sC6.0102 kgm/s D6.3102 kgm/s解析:选A.燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p,根据动量守恒定律,可得pmv00,解得pmv00.050 kg600 m/s30 kgm/s,选项A正确 学生用书P1151.(2015高考福建卷)如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向
21、向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()AA和B都向左运动BA和B都向右运动CA静止,B向右运动 DA向左运动,B向右运动解析:选D.选向右为正方向,则A的动量pAm2v02mv0,B的动量pB2mv0.碰前A、B的动量之和为零,根据动量守恒,碰后A、B的动量之和也应为零,可知四个选项中只有选项D符合题意2.2017年7月9日,斯诺克世界杯在江苏无锡落下帷幕,由丁俊晖和梁文博组成的中国A队在决赛中1比3落后的不利形势下成功逆转,最终以4比3击败英格兰队,帮助中国斯诺克台球队获得了世界杯三连冠如图为丁俊晖正在准备击球,设在丁俊晖这一杆中,白色球(主
22、球)和花色球碰撞前、后都在同一直线上运动,碰前白色球的动量pA5 kgm/s,花色球静止,白色球A与花色球B发生碰撞后,花色球B的动量变为pB4 kgm/s,则两球质量mA与mB间的关系可能是()AmBmA BmBmACmBmA DmB6mA解析:选A.由动量守恒定律得pApBpApB,解得pA1 kgm/s,根据碰撞过程中总动能不增加,则有,代入数据解得mBmA,碰后两球同向运动,白色球A的速度不大于花色球B的速度,则,解得mB4mA,综上可得mAmB4mA,选项A正确3.如图所示,在光滑水平面上有一辆质量M8 kg的平板小车,车上有一个质量m1.9 kg的木块,木块距小车左端6 m(木块可
23、视为质点),车与木块一起以v1 m/s的速度水平向右匀速行驶一颗质量m00.1 kg的子弹以v0179 m/s的初速度水平向左飞,瞬间击中木块并留在其中如果木块刚好不从车上掉下,求木块与平板小车之间的动摩擦因数(g10 m/s2)解析:设子弹射入木块后的共同速度为v1,以水平向左为正方向,则由动量守恒定律有m0v0mv(mm0)v1代入数据解得v18 m/s.它们恰好不从小车上掉下来,则它们相对平板车滑行s6 m时,它们跟小车具有共同速度v2,则由动量守恒定律有(mm0)v1Mv(mm0M)v2由能量守恒定律有Q(mm0)gs(mm0)vMv2(mm0M)v联立并代入数据解得0.54.答案:0
24、.544(2015高考全国卷)两滑块a、b沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段两者的位置x随时间t变化的图象如图所示求:(1)滑块a、b的质量之比;(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比解析:(1)设a、b的质量分别为m1、m2,a、b碰撞前的速度为v1、v2.由题给图象得v12 m/sv21 m/sa、b发生完全非弹性碰撞,碰撞后两滑块的共同速度为v.由题给图象得v m/s由动量守恒定律得m1v1m2v2(m1m2)v联立式得m1m218.(2)由能量守恒得,两滑块因碰撞而损失的机械能为Em1vm
25、2v(m1m2)v2由图象可知,两滑块最后停止运动由动能定理得,两滑块克服摩擦力所做的功为W(m1m2)v2联立式,并代入题给数据得WE12.答案:(1)18(2)12学生用书P315(单独成册)(建议用时:60分钟)一、单项选择题1(高考浙江自选模块)如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧甲木块与弹簧接触后()A甲木块的动量守恒B乙木块的动量守恒C甲、乙两木块所组成系统的动量守恒D甲、乙两木块所组成系统的动能守恒解析:选C.两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项
26、A、B错误,选项C正确甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,选项D错误2(2018泉州检测)有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向右,则另一块的速度是()A3v0vB2v03vC3v02v D2v0v解析:选C.在最高点水平方向动量守恒,由动量守恒定律可知,3mv02mvmv,可得另一块的速度为v3v02v,对比各选项可知,答案选C.3一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离已知前部分的卫星质量为m1
27、,后部分的箭体质量为m2,分离后箭体以速率v2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v1为()Av0v2 Bv0v2Cv0v2 Dv0(v0v2)解析:选D.对火箭和卫星由动量守恒定律得(m1m2)v0m2v2m1v1,解得v1v0(v0v2)4将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是()A. v0 B v0C. v0 D v0解析:选D.应用动量守恒定律解决本题,注意火箭模型质量的变化取向下为正方向,由动量守恒
28、定律可得:0mv0(Mm)v故v,选项D正确5.如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上现把小球从与O点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是()A. BC. D解析:选B.分析可知小球在下摆过程中,小车向左加速,当小球从最低点向上摆动过程中,小车向左减速,当小球摆到右边且与O点等高时,小车的速度减为零,此时小车向左的位移达到最大,小球相对于小车的位移为2L.小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v1、v2,有mv1Mv2,故ms1Ms2,s
29、1s22L,其中s1代表小球的水平位移大小,s2代表小车的水平位移大小,因此s2,选项B正确6(2018江西赣州信丰模拟)如图所示,B、C、D、E、F,5个小球并排放置在光滑的水平面上,B、C、D、E,4个球质量相等,而F球质量小于B球质量,A球的质量等于F球质量A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A3个小球静止,3个小球运动B4个小球静止,2个小球运动C5个小球静止,1个小球运动D6个小球都运动解析:选A.因A、B质量不等,MAMB.A、B相碰后A速度向左运动,B向右运动B、C、D、E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B、C、D静止E、F质
30、量不等,MEMF,则E、F都向右运动所以B、C、D静止;A向左,E、F向右运动故A正确,B、C、D错误二、多项选择题7如图所示,一质量M3.0 kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m1.0 kg的小木块A,同时给A和B以大小均为4.0 m/s,方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B板,在小木块A做加速运动的时间内,木板速度大小可能是()A2.1 m/s B2.4 m/sC2.8 m/s D3.0 m/s解析:选AB.以A、B组成的系统为研究对象,系统动量守恒,取水平向右方向为正方向,从A开始运动到A的速度为零过程中,由动量守恒定律得:(Mm)v
31、0MvB1,代入数据解得:vB12.67 m/s,当从开始到A、B速度相同的过程中,取水平向右方向为正方向,由动量守恒定律得:(Mm)v0(Mm)vB2,代入数据解得:vB22 m/s,则在木块A正在做加速运动的时间内B的速度范围为:2 m/svB2.67 m/s,故选项A、B正确8.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动两球质量关系为mB2mA,规定向右为正方向,A、B两球的动量均为6 kgm/s,运动中两球发生碰撞,碰撞后A球的动量增量为4 kgm/s,则()A该碰撞为弹性碰撞B该碰撞为非弹性碰撞C左方是A球,碰撞后A、B两球速度大小之比为25D右方是A球,碰撞后A、
32、B两球速度大小之比为110解析:选AC.由mB2mA,pApB知碰前vBvA,若右方为A球,由于碰前动量都为6 kgm/s,即都向右运动,两球不可能相碰;若左方为A球,设碰后二者速度分别为vA、vB,由题意知pAmAvA2 kgm/s,pBmBvB10 kgm/s,解得.碰撞后A球动量变为2 kgm/s,B球动量变为10 kgm/s,又mB2mA,由计算可知碰撞前后A、B两球动能之和不变,即该碰撞为弹性碰撞,选项A、C正确9.质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为.初始时小物块停在箱子正中间,如图所示现给小物块一水平向右
33、的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止设碰撞都是弹性的,则整个过程中,系统损失的动能为()A.mv2 Bv2C.NmgL DNmgL解析:选BD.设系统损失的动能为E,根据题意可知,整个过程中小物块和箱子构成的系统满足动量守恒和能量守恒,则有mv(Mm)vt(式)、mv2(Mm)vE(式),由联立解得Ev2,可知选项A错误,B正确;又由于小物块与箱壁碰撞为弹性碰撞,则损耗的能量全部用于摩擦生热,即ENmgL,选项C错误,D正确10一弹丸在飞行到距离地面5 m高时仅有水平速度v2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为31,不计质量损失,取重力加
34、速度g10 m/s2.则下列图中两块弹片飞行的轨迹不正确的是()解析:选ACD.弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒因两弹片均水平飞出,飞行时间t1 s,取向右为正,由水平速度v知,选项A中,v甲2.5 m/s,v乙0.5 m/s;选项B中,v甲2.5 m/s,v乙0.5 m/s;选项C中,v甲1 m/s,v乙2 m/s;选项D中,v甲1 m/s,v乙2 m/s.因爆炸瞬间动量守恒,故mvm甲v甲m乙v乙,其中m甲m,m乙m,v2 m/s,代入数值计算知选项B正确三、非选择题11如图所示,小球B与一轻质弹簧相连,并静止在足够长的光滑水平面上,小球A以某一速度与轻质弹簧正碰小球A与弹
35、簧分开后,小球B的速度为v,求:(1)当两个小球与弹簧组成的系统动能最小时,小球B的速度的大小(2)若小球B的质量m2已知,在小球A与弹簧相互作用的整个过程中,小球A受到弹簧作用力的冲量解析:(1)当系统动能最小时,弹簧压缩至最短,两球具有共同速度v共设小球A、B的质量分别为m1、m2,碰撞前小球A的速度为v0,小球A与弹簧分开后的速度为v1.从小球A碰到弹簧到与弹簧分开的过程中,由系统动量守恒和能量守恒有m1v0m1v1m2vm1vm1vm2v2联立解得v即m1v0v从小球A碰到弹簧到两球共速的过程中,系统动量守恒,故m1v0(m1m2)v共解得v共.(2)设水平向右为正方向,则小球B动量的
36、增量为m2v,根据动量守恒小球A动量的增量为m2v根据动量定理有Im2v,小球A受到弹簧作用的冲量的大小为m2v,方向水平向左答案:见解析12(2018河北邯郸摸底)如图,木块A、B的质量均为m,放在一段粗糙程度相同的水平地面上,木块A、B间夹有一小块炸药(炸药的质量可以忽略不计)让A、B以初速度v0一起从O点滑出,滑行一段距离后到达P点,速度变为,此时炸药爆炸使木块A、B脱离,发现木块B立即停在原位置,木块A继续沿水平方向前进已知O、P两点间的距离为s,设炸药爆炸时释放的化学能全部转化为木块的动能,爆炸时间很短可以忽略不计,求:(1)木块与水平地面的动摩擦因数;(2)炸药爆炸时释放的化学能解析:(1)设木块与地面间的动摩擦因数为,炸药爆炸释放的化学能为E0.从O滑到P,对A、B由动能定理得2mgs2m2mv,解得.(2)在P点爆炸时,A、B动量守恒,有2mmv,根据能量守恒有E02mmv2,解得E0mv.答案:(1)(2)mv