高考物理一轮复习 第五章 能量和动量 第3节 机械能守恒定律及其应用-人教版高三全册物理试题.doc

上传人:晚风 文档编号:92290733 上传时间:2023-06-02 格式:DOC 页数:20 大小:749KB
返回 下载 相关 举报
高考物理一轮复习 第五章 能量和动量 第3节 机械能守恒定律及其应用-人教版高三全册物理试题.doc_第1页
第1页 / 共20页
高考物理一轮复习 第五章 能量和动量 第3节 机械能守恒定律及其应用-人教版高三全册物理试题.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《高考物理一轮复习 第五章 能量和动量 第3节 机械能守恒定律及其应用-人教版高三全册物理试题.doc》由会员分享,可在线阅读,更多相关《高考物理一轮复习 第五章 能量和动量 第3节 机械能守恒定律及其应用-人教版高三全册物理试题.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第3节机 械能守恒定律及其应用(1)重力势能的大小与零势能参考面的选取有关。()(2)重力势能的变化与零势能参考面的选取无关。()(3)被举到高处的物体重力势能一定不为零。()(4)克服重力做功,物体的重力势能一定增加。()(5)发生弹性形变的物体都具有弹性势能。()(6)弹力做正功弹性势能一定增加。()(7)物体所受的合外力为零,物体的机械能一定守恒。()(8)物体的速度增大时,其机械能可能减小。()(9)物体除受重力外,还受其他力,但其他力不做功,则物体的机械能一定守恒。()突破点(一)机械能守恒的理解与判断1对机械能守恒条件的理解(1)只受重力作用,例如做平抛运动的物体机械能守恒。(2)

2、除重力外,物体还受其他力,但其他力不做功或做功代数和为零。(3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能变化量的负值,那么系统的机械能守恒,注意并非物体的机械能守恒,如与弹簧相连的小球下摆的过程机械能减少。2机械能是否守恒的三种判断方法(1)利用机械能的定义判断:若物体动能、势能之和不变,机械能守恒。(2)利用守恒条件判断。(3)利用能量转化判断:若物体系统与外界没有能量交换,物体系统内也没有机械能与其他形式能的转化,则物体系统机械能守恒。多角练通1(2017兰州模拟)以下情形中,物体的机械能一定守恒的是()A下落的物体受到空气阻力的作用B物体以一定初速度在粗糙的水平面上滑动

3、C一物体匀速上升D物体沿光滑斜面自由下滑解析:选D物体下落的过程中受到空气阻力的作用,且阻力做负功,故物体的机械能不守恒,A错误;物体以一定初速度在粗糙的水平面上滑动时势能不变,动能减小,机械能不守恒,B错误;物体匀速上升过程动能不变,势能增大,机械能不守恒,C错误;物体沿光滑斜面自由下滑过程中只有重力做功,机械能守恒,故D正确。2.(2017保定模拟)如图所示,倾角为的光滑斜面体C固定于水平地面上,小物块B置于斜面上,通过细绳跨过光滑的定滑轮与物体A相连接,释放后,A将向下运动,则在A碰地前的运动过程中()AA的加速度大小为gB物体A机械能守恒C由于斜面光滑,所以物块B机械能守恒DA、B组成

4、的系统机械能守恒解析:选D物体A向下运动的过程中除受到重力以外,还受到细绳向上的拉力,故物体A下落的加速度一定小于g,A项错误;物体A下落过程中,细绳的拉力做负功,A的机械能不守恒,故B项错误;由于斜面光滑,A、B组成的系统在整个运动过程中,只有重力做功,系统机械能守恒,但细绳拉力对B做正功,B的机械能增加,故C项错误,D项正确。3.把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示。迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙)。忽略弹簧的质量和空气阻力。则小球从A位置运动到C位置的过程中,下列说法正确的是()A经过位置B时小球的加速度为0B经过位置B时

5、小球的速度最大C小球、地球、弹簧所组成系统的机械能守恒D小球、地球、弹簧所组成系统的机械能先增大后减小解析:选C分析小球从A位置到B位置的过程中受力情况,开始时弹力大于重力,中间某一位置弹力和重力相等,接着弹力小于重力,在B点时,弹力为零,小球从B到C的过程中,只受重力。根据牛顿第二定律可以知道小球从A位置到B位置过程中,小球先向上做加速运动再向上做减速运动,所以速度最大位置应该是加速度为零的位置,在AB之间某一位置,选项A、B错误;从A位置到C位置过程中小球、地球、弹簧组成的系统只有重力和弹力做功,所以系统的机械能守恒,选项C正确,D错误。突破点(二)单个物体的机械能守恒1机械能守恒的三种表

6、达式对比守恒角度转化角度转移角度表达式E1E2EkEpEA增EB减物理意义系统初状态机械能的总和与末状态机械能的总和相等表示系统(或物体)机械能守恒时,系统减少(或增加)的重力势能等于系统增加(或减少)的动能若系统由A、B两部分组成,则A部分物体机械能的增加量与B部分物体机械能的减少量相等注意事项应用时应选好重力势能的零势能面,且初、末状态必须用同一零势能面计算势能应用时关键在于分清重力势能的增加量和减少量,可不选零势能面而直接计算初、末状态的势能差常用于解决两个或多个物体组成的系统的机械能守恒问题2求解单个物体机械能守恒问题的基本思路(1)选取研究对象物体。(2)根据研究对象所经历的物理过程

7、,进行受力、做功分析,判断机械能是否守恒。(3)恰当地选取参考平面,确定研究对象在初、末状态时的机械能。(4)选取方便的机械能守恒定律的方程形式(Ek1Ep1Ek2Ep2、EkEp)进行求解。典例(2017贵州七校高三联考)如图所示,水平传送带的右端与竖直面内的用内壁光滑钢管弯成的“9”形固定轨道相接,钢管内径很小。传送带的运行速度为v06 m/s,将质量m1.0 kg的可看作质点的滑块无初速地放在传送带A端,传送带长度L12.0 m,“9”形轨道高H0.8 m,“9”形轨道上半部分圆弧半径为R0.2 m,滑块与传送带间的动摩擦因数为0.3,重力加速度g10 m/s2,试求:(1)滑块从传送带

8、A端运动到B端所需要的时间;(2)滑块滑到轨道最高点C时受到轨道的作用力大小;(3)若滑块从“9”形轨道D点水平抛出后,恰好垂直撞在倾角45的斜面上P点,求P、D两点间的竖直高度h(保留两位有效数字)。审题指导第一步:抓关键点关键点获取信息内壁光滑的“9”形固定轨道滑块在“9”形轨道内运动时机械能守恒滑块无初速地放在传送带A端滑块从A点开始做初速度为0的匀加速运动滑块从“9”形轨道D点水平抛出滑块由D到P做平抛运动,机械能守恒恰好垂直撞在倾角45的斜面上的P点滑块在P点的速度vP垂直于斜面,其水平分速度为vD第二步:找突破口(1)判断滑块在传送带上的运动时,若滑块与传送带同速时没有到达B点,则

9、剩余部分将做匀速直线运动。(2)在轨道的C点,根据FNmgm求滑块受轨道的作用力时,应先求出滑块到C点的速度vC。(3)滑块由D点到P点做平抛运动,故滑块在P点速度vP在水平方向的分速度与在D点速度相等,即vDvPsin 。解析(1)滑块在传送带运动时,由牛顿第二定律得:mgma得:ag3 m/s2加速到与传送带达到共速所需要的时间:t12 s前2 s内的位移:x1at126 m之后滑块做匀速运动的位移:x2Lx16 m时间:t21 s故滑块从传送带A端运动到B端所需时间为:tt1t23 s。(2)滑块由B运动到C,由机械能守恒定律得:mgHmvC2mv02在C点,轨道对滑块的弹力与其重力的合

10、力提供做圆周运动的向心力,设轨道对滑块的弹力方向竖直向下,由牛顿第二定律得:FNmgm解得:FN90 N。(3)滑块由B到D运动的过程中,由机械能守恒定律得:mv02mvD2mg(H2R)设P、D两点间的竖直高度为h,滑块由D到P运动的过程中,由机械能守恒定律得:mvP2mvD2mgh又vDvPsin 45由以上三式可解得h1.4 m。答案(1)3 s(2)90 N(3)1.4 m方法规律(1)列方程时,选取的表达角度不同,表达式不同,对参考平面的选取要求也不一定相同。(2)应用机械能守恒能解决的问题,应用动能定理同样能解决,但其解题思路和表达式有所不同。集训冲关1(2016全国甲卷)小球P和

11、Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点,()AP球的速度一定大于Q球的速度BP球的动能一定小于Q球的动能CP球所受绳的拉力一定大于Q球所受绳的拉力DP球的向心加速度一定小于Q球的向心加速度解析:选C两球由静止释放到运动到轨迹最低点的过程中只有重力做功,机械能守恒,取轨迹的最低点为零势能点,则由机械能守恒定律得mgLmv2,v,因LPLQ,则vPvQ,又mPmQ,则两球的动能无法比较,选项A、B错误;在最低点绳的拉力为F,则Fmgm,解得F3mg,因mPmQ,则FPF

12、Q,选项C正确;向心加速度a2g,选项D错误。 2.(2016海南高考)如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动。已知小球在最低点时对轨道的压力大小为N1,在高点时对轨道的压力大小为N2。重力加速度大小为g,则N1N2的值为()A3mgB4mgC5mg D6mg解析:选D设小球在最低点时速度为v1,在最高点时速度为v2,根据牛顿第二定律有,在最低点:N1mg,在最高点:N2mg;从最高点到最低点,根据动能定理有mg2Rmv12mv22,联立可得:N1N26 mg,故选项D正确。3.如图所示,ABDO是处于竖直平面内的光滑固定轨道,AB是半径为R15 m的圆周轨道,

13、半径OA处于水平位置,BDO是直径为15 m的半圆轨道,D为BDO轨道的中央。一个小球P从A点的正上方高H处自由落下,沿竖直平面内的轨道通过D点时对轨道的压力等于其重力的倍。取g10 m/s2。(1)求H的大小。(2)试讨论小球能否到达O点,并说明理由。(3)求小球再次落到轨道上的速度大小。解析:(1)设小球通过D点的速度为v,则有:mFmg小球从P点落下直到沿光滑轨道运动到D点的过程中,机械能守恒,有mgmv2,可得高度HR10 m。(2)设小球能够沿竖直半圆轨道运动到O点的最小速度为vm,有mmg小球至少应从Hm高处落下,mgHmmvm2解得Hm,由HHm,小球可以通过BDO轨道的O点。(

14、3)小球由H落下通过O点的速度为v014.1 m/s小球通过O点后做平抛运动,设小球经时间t落到AB圆弧轨道上,有xv0tygt2且x2y2R2可解得时间t1 s(另解舍弃)落到轨道上的速度大小v17.3 m/s。答案:(1)10 m(2)能。理由见解析(3)17.3 m/s突破点(三)多个物体的机械能守恒典例物体A的质量为mA,圆环B的质量为mB,通过绳子跨过定滑轮连结在一起,圆环套在光滑的竖直杆上,开始时连接圆环的绳子处于水平,如图所示,长度l4 m,现从静止释放圆环。不计定滑轮和空气的阻力,取g10 m/s2。求:(1)若mAmB52,则圆环能下降的最大距离hm。(2)若圆环下降h23

15、m时的速度大小为4 m/s,则两个物体的质量应满足怎样的关系?(3)若mAmB,请定性说明圆环下降过程中速度大小变化的情况及其理由。解析(1)设圆环所能下降的最大距离为hm,由机械能守恒定律得mBghmmAghAhm2l2(lhA)2代入数据得hm2hm0解得hm m3.8 m。(2)由机械能守恒mBgh2mAghAmBvB2mAvA2vAvBcos vB4 m/s2.4 m/sh22l2(lhA)2,解得hA1 m解得两个物体的质量关系:1.71。(3)当mAmB,且l确定时,根据几何关系可知圆环下降的高度大于A上升的高度,则在圆环下降过程中,系统的重力势能一直在减少,根据系统的机械能守恒可

16、知系统的动能一直在增加,所以圆环在下降过程中速度一直增大。答案(1)3.8 m(2)mAmB1.71(3)速度一直增大,当mAmB,且l确定时,根据几何关系可知圆环下降的高度大于A上升的高度,则在圆环下降过程中,系统的重力势能一直在减少,根据系统的机械能守恒可知系统的动能一直在增加,所以圆环在下降过程中速度一直增大。易错提醒(1)对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒。(2)注意寻找用绳或杆相连接的物体间的速度关系和位移关系。(3)列机械能守恒方程时,一般选用EkEp或EAEB的形式。集训冲关1.(2017淄博、莱芜二模如图所示,不可伸长的柔软轻绳跨过光滑定滑轮,绳

17、两端各系一小球a和b。a球质量为m,静置于水平地面上;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧。现将b球释放,则b球着地瞬间a球的速度大小为()A.B.C. D2解析:选A在b球落地前,a、b两球组成的系统机械能守恒,且a、b两球速度大小相等,设为v,根据机械能守恒定律有:3mghmgh(3mm)v2,解得:v,故A正确。2(多选)(2016全国甲卷)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连。现将小球从M点由静止释放,它在下降的过程中经过了N点。已知在M、N两点处,弹簧对小球的弹力大小相等,且ONMOMN。在小球从M点运动到N点的过程中,()A弹力对小球

18、先做正功后做负功B有两个时刻小球的加速度等于重力加速度C弹簧长度最短时,弹力对小球做功的功率为零D小球到达N点时的动能等于其在M、N两点的重力势能差解析:选BCD在M、N两点处,弹簧对小球的弹力大小相等,且ONMOMN,则小球在M点时弹簧处于压缩状态,在N点时弹簧处于拉伸状态,小球从M点运动到N点的过程中,弹簧长度先缩短,当弹簧与竖直杆垂直时弹簧达到最短,这个过程中弹力对小球做负功,然后弹簧再伸长,弹力对小球开始做正功,当弹簧达到自然伸长状态时,弹力为零,再随着弹簧的伸长弹力对小球做负功,故整个过程中,弹力对小球先做负功,再做正功,后再做负功,选项A错误;在弹簧与杆垂直时及弹簧处于自然伸长状态

19、时,小球加速度等于重力加速度,选项B正确;弹簧与杆垂直时,弹力方向与小球的速度方向垂直,则弹力对小球做功的功率为零,选项C正确;由机械能守恒定律知,在M、N两点弹簧弹性势能相等,在N点动能等于从M点到N点重力势能的减小值,选项D正确。3.(2017邯郸一中调研)如图,在半径为r的轴上通过细绳悬挂着一个质量为M的水桶P,轴上均匀分布着6根手柄,每个手柄端固定有质量均为m的金属球,球离轴心的距离为l,轮轴、细绳和手柄的质量及摩擦均不计。现由静止释放水桶,整个装置开始转动。(1)当水桶下降的高度为h时,水桶的速度为多少?(2)已知水桶匀加速下降,下降过程中细绳的拉力为多少?解析:(1)设水桶下降的高

20、度为h时,水桶的速度为v1,金属球的速度为v2,系统机械能守恒,有:MghMv126mv22,又:,解得:v1 。(2)设水桶匀加速下降的加速度为a,则:v122ah,a,对水桶:MgTMa,解得:TM(ga)。答案:(1) (2)非质点类机械能守恒问题像“液柱”、“链条”、“过山车”类物体,在其运动过程中将发生形变,其重心位置相对物体也发生变化,因此这类物体不能再视为质点来处理了。(一)“液柱”类问题1.如图所示,粗细均匀,两端开口的U形管内装有同种液体、开始时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为()A. B. C. D. 解

21、析:选A当两液面高度相等时,减少的重力势能转化为整个液体的动能,根据功能关系有mghmv2,解得:v ,故A正确。(二)“链条”类问题2如图所示,AB为光滑的水平面,BC是倾角为的足够长的光滑斜面,斜面体固定不动。AB、BC间用一小段光滑圆弧轨道相连。一条长为L的均匀柔软链条开始时静止的放在ABC面上,其一端D至B的距离为La。现自由释放链条,则:(1)链条下滑过程中,系统的机械能是否守恒?简述理由;(2)链条的D端滑到B点时,链条的速率为多大?解析:(1)链条在下滑过程中机械能守恒,因为斜面BC和水平面AB均光滑,链条下滑时只有重力做功,符合机械能守恒的条件。(2)设链条质量为m,可以认为始

22、、末状态的重力势能变化是由La段下降引起的,高度减少量hsin sin 该部分的质量为m(La)由机械能守恒定律可得:(La)ghmv2,可解得:v 。答案:(1)守恒理由见解析(2) (三)“过山车”类问题3.如图所示,露天娱乐场空中列车是由许多节完全相同的车厢组成,列车先沿光滑水平轨道行驶,然后滑上一固定的半径为R的空中圆形光滑轨道,若列车全长为L(L2R),R远大于一节车厢的长度和高度,那么列车在运行到圆形光滑轨道前的速度至少要多大,才能使整个列车安全通过固定的圆形轨道(车厢间的距离不计)。解析:当列车进入轨道后,动能逐渐向势能转化,车速逐渐减小,当车厢占满圆形轨道时的速度最小,设此时的

23、速度为v,列车的质量为M,轨道上那部分列车的质量M2R由机械能守恒定律可得:Mv02Mv2MgR又因圆形轨道顶部车厢应满足:mgm,可求得:v0 。答案: 反思领悟(1)物体虽然不能看作质点,但因只有重力做功,物体整体机械能守恒。(2)在确定物体重力势能的变化量时,要根据情况,将物体分段处理,确定好各部分的重心及重心高度的变化量。(3)非质点类物体各部分是否都在运动,运动的速度大小是否相同,若相同,则物体的动能才可表示为mv2。对点训练:机械能守恒的理解与判断1(多选)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点(在水面上方)时距水面还有数米距离。假定空气阻力可忽略不计,运动员可视

24、为质点,下列说法正确的是()A运动员到达最低点前重力势能始终减小B蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D蹦极过程中,运动员的重力势能的改变量与重力势能零点的选取有关解析:选ABC运动员下落到最低点前,重力做正功,重力势能减小,A正确;蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加,B正确;蹦极过程中,对运动员、地球和蹦极绳所组成的系统,除重力和弹力外其他力不做功,系统机械能守恒,C正确;蹦极过程中,运动员的重力势能的大小与重力势能零点的选择有关,但运动员的重力势能的改变量与重力势能零点的选择无关,D错误。2.(2016唐

25、山二模)如图所示,质量均为m,半径均为R的两个完全相同的小球A、B,在水平轨道上以某一初速度向右冲上倾角为的倾斜轨道,两轨道通过一小段圆弧平滑连接。若两小球运动过程中始终接触,不计摩擦阻力及弯道处的能量损失,在倾斜轨道上运动到最高点时两球机械能的差值为()图1A0 BmgRsin C2mgRsin D2mgR解析:选C两球运动到最高点时速度相等,动能相等,则两球机械能的差值等于重力势能的差值,为:Emg2Rsin 2mgRsin ,故C正确。3.(2017贵阳监测)如图所示,一质量为m的小球固定于轻质弹簧的一端,弹簧的另一端固定于O点。将小球拉至A点,弹簧恰好无形变,由静止释放小球,当小球运动

26、到O点正下方与A点的竖直高度差为h的B点时,速度大小为v。已知重力加速度为g,下列说法正确的是()A小球运动到B点时的动能等于mghB小球由A点到B点重力势能减少mv2C小球由A点到B点克服弹力做功为mghD小球到达B点时弹簧的弹性势能为mghmv2解析:选D小球由A点到B点的过程中,小球和弹簧组成的系统机械能守恒,弹簧由原长到发生伸长的形变,小球动能增加量小于重力势能减少量,A项错误;小球重力势能减少量等于小球动能增加量与弹簧弹性势能增加量之和,B项错误;弹簧弹性势能增加量等于小球重力势能减少量与动能增加量之差,D项正确;弹簧弹性势能增加量等于小球克服弹力所做的功,C项错误。对点训练:单个物

27、体的机械能守恒4.如图所示,一长L的均匀铁链对称挂在一轻质小滑轮上,由于某一微小的扰动使得链条向一侧滑动,则铁链完全离开滑轮时的速度大小为()A. B.C. D.解析:选C铁链向一侧滑动的过程受重力和滑轮弹力的作用,弹力始终与对应各节链条的运动方向垂直,故只有重力做功。设铁链刚好完全离开滑轮时的速度为v,由机械能守恒定律有:mv2Ep0,其中铁链重力势能的变化量相当于滑离时下半部分的重力势能减去滑动前左半部分的重力势能,如图所示,即Epmg,解得v。故C项正确。5如图甲所示,将质量为m的小球以速度v0竖直向上抛出,小球上升的最大高度为h。若将质量分别为2m、3m、4m、5m的小球,分别以同样大

28、小的速度v0从半径均为Rh的竖直圆形光滑轨道的最低点水平向右射入轨道,轨道形状如图乙、丙、丁、戊所示。则质量分别为2m、3m、4m、5m的小球中,能到达的最大高度仍为h的是(小球大小和空气阻力均不计)()A质量为2m的小球B质量为3m的小球C质量为4m的小球D质量为5m的小球解析:选C由题意可知,质量为m的小球,竖直向上抛出时只有重力做功,故机械能守恒,得:mghmv02。题图乙将质量为2m的小球以速度v0射入轨道,小球若能到达最大高度为h,则此时速度不为零,此时的动能与重力势能之和,大于初位置时的动能与重力势能,故不可能,即h2h,故A错误;由丙图和戊图,可知小球出轨道时的速度方向不沿竖直方

29、向,则上升到最高点时水平方向速度不为零,依据机械能守恒定律:h3h,h5h,故B、D错误;由丁图可知,小球出轨道时的速度方向沿竖直方向向上,则上升到最高点时,速度为零,依据机械能守恒定律:h4h,故C正确。6(2017南平质检)竖直平面内半径为R的光滑圆弧轨道CDM与左侧光滑斜面体ABC相切于C点,倾角分别如图所示。O为圆弧圆心,D为圆弧最低点,C、M在同一水平高度。斜面体ABC固定在地面上,顶端B安装一个光滑的定滑轮,一轻质细绳跨过定滑轮分别连接小物块P、Q(两边细绳分别与对应斜面平行),此时P、Q两物块在斜面上保持静止。若PC间距L10.25 m,物块P质量m13 kg。(取g10 m/s

30、2。sin 370.6,cos 370.8)求:(1)小物块Q的质量m2;(2)若烧断细绳后,物块P第一次过D点时对轨道的压力大小为78 N,则圆弧面的半径R是多少?解析:(1)P、Q两物块在斜面上保持静止,根据平衡条件得:对P受力分析:m1gsin 53T对Q受力分析:Tm2gsin 37由式代入数据解得:m24 kg。(2)物块P运动到D过程由机械能守恒定律得:m1ghm1vD2由几何关系得:hL1sin 53R(1cos 53)物块P运动到D点时,根据牛顿第二定律:FDm1gm1由代入数据得:R0.5 m。答案:(1)4 kg(2)0.5 m对点训练:多个物体的机械能守恒7.(多选)(2

31、017沈阳质量监测)如图所示,A和B两个小球固定在一根轻杆的两端,A球的质量为m,B球的质量为2m,此杆可绕穿过O点的水平轴无摩擦地转动。现使轻杆从水平位置由静止释放,则在杆从释放到转过90的过程中,下列说法正确的是()AA球的机械能增加B杆对A球始终不做功CB球重力势能的减少量等于B球动能的增加量DA球和B球的总机械能守恒解析:选ADA球由静止向上运动,重力势能增大,动能也增大,所以机械能增大,杆一定对A球做了功,A项正确,B项错误;由于无摩擦力做功,系统只有重力做功,A球和B球的总机械能守恒,A球机械能增加,B球的机械能一定减少,故D项正确,C项错误。8(2017烟台模拟)如图所示,可视为

32、质点的小球A和B用一根长为0.2 m的轻杆相连,两球质量相等,开始时两小球置于光滑的水平面上,并给两小球一个2 m/s的初速度,经一段时间两小球滑上一个倾角为30的光滑斜面,不计球与斜面碰撞时的机械能损失,g取10 m/s2,在两小球的速度减小为零的过程中,下列判断正确的是()A杆对小球A做负功B小球A的机械能守恒C杆对小球B做正功D小球B速度为零时距水平面的高度为0.15 m解析:选D由题意可知,A、B两球在上升中受A的重力做功而做减速运动;假设没有杆连接,则A上升到斜面时,B还在水平面上运动,即A在斜面上做减速运动,B在水平面上做匀速运动,因有杆存在,所以是B推着A上升,因此杆对A做正功,

33、故A错误;因杆对A球做正功,故A球的机械能不守恒,故B错误;由以上分析可知,杆对球B做负功,故C错误;根据系统机械能守恒,可得:mghmg(hLsin 30)2mv2,解得:h0.15 m,故D正确。9.(多选)(2017苏北四市高三调研)如图所示,固定在地面的斜面体上开有凹槽,槽内紧挨放置六个半径均为r的相同小球,各球编号如图。斜面与水平轨道OA平滑连接,OA长度为6r。现将六个小球由静止同时释放,小球离开A点后均做平抛运动,不计一切摩擦。则在各小球运动过程中,下列说法正确的是()A球1的机械能守恒B球6在OA段机械能增加C球6的水平射程最小D六个小球落地点各不相同解析:选BC6个小球都在斜

34、面上运动时,只有重力做功,整个系统的机械能守恒。当有部分小球在水平轨道上运动时,斜面上的小球仍在加速,即球2对1的作用力做功,故球1的机械能不守恒,故A错误;球6在OA段运动时,斜面上的球在加速,球5对球6的作用力做正功,动能增加,机械能增加,故B正确;由于有部分小球在水平轨道上运动时,斜面上的小球仍在加速,所以可知离开A点时球6的速度最小,水平射程最小,故C正确;由于离开A点时,球6的速度最小,水平射程最小,而最后三个球在水平面上运动时不再加速,1、2、3球的速度相等,水平射程相同,所以六个小球的落点不全相同,故D错误。10.如图所示,在倾角为30的光滑斜面体上,一劲度系数为k200 N/m

35、的轻质弹簧一端连接固定挡板C,另一端连接一质量为m4 kg的物体A,一轻细绳通过定滑轮,一端系在物体A上,另一端与质量也为m的物体B相连,细绳与斜面平行,斜面足够长,用手托住物体B使细绳刚好没有拉力,然后由静止释放,求:(1)弹簧恢复原长时细绳上的拉力;(2)物体A沿斜面向上运动多远时获得最大速度;(3)物体A的最大速度大小。解析:(1)弹簧恢复原长时,物体A、B的加速度大小相同,对B分析:mgTma对A分析:Tmgsin 30ma代入数据解得:T30 N。(2)初始位置,弹簧的压缩量为:x110 cm,当物体A速度最大时,即物体A的加速度为0,对物体A分析有:mgkx2mgsin 30弹簧的

36、伸长量为:x210 cm所以物体A沿斜面上升的距离为:xx1x220 cm。(3)因为x1x2,所以弹簧的弹性势能没有改变,由系统机械能守恒得:mg(x1x2)mg(x1x2)sin 302mv2解得:v1 m/s。答案:(1)30 N(2)20 cm(3)1 m/s考点综合训练11(多选)(2017漳州检测)如图所示,足够长的水平传送带以速度v沿逆时针方向转动,传送带的左端与光滑圆弧轨道底部平滑连接,圆弧轨道上的A点与圆心等高,一小物块从A点静止滑下,再滑上传送带,经过一段时间又返回圆弧轨道,返回圆弧轨道时小物块恰好能到达A点,则下列说法正确的是()A圆弧轨道的半径一定是B若减小传送带速度,

37、则小物块仍可能到达A点C若增加传送带速度,则小物块有可能经过圆弧轨道的最高点D不论传送带速度增加到多大,小物块都不可能经过圆弧轨道的最高点解析:选BD物块在圆弧轨道上下滑的过程中,物块的机械能守恒,根据机械能守恒可得:mgRmv02,所以小物块滑上传送带的初速度:v0,物块到达传送带上之后,由于摩擦力的作用开始减速,速度减小为零之后,又在传送带的摩擦力的作用下反向加速,根据物块的受力可知,物块在减速和加速的过程物块的加速度的大小是相同的,所以物块返回圆弧轨道时速度大小等于从圆弧轨道下滑刚到传送带时的速度大小,只要传送带的速度v,物块就能返回到A点,则R,故A项错误;若减小传送带速度,只要传送带

38、的速度v,物块就能返回到A点,故B项正确;若增大传送带的速度,由于物块返回到圆弧轨道的速度不变,只能滑到A点,不能滑到圆弧轨道的最高点,故C项错误,D项正确。12(2017威海高三月考)如图所示,半径为R的光滑半圆形轨道ABC与倾角为37的粗糙斜面轨道DC相切于C点,半圆形轨道的直径AC与斜面垂直。质量为m的小球从A点左上方距A点高为h的P点以某一速度水平抛出,刚好与半圆形轨道的A点相切进入半圆形轨道内侧,之后经半圆形轨道沿斜面刚好运动到与抛出点等高的D处。已知当地的重力加速度为g,取Rh,sin 370.6,cos 370.8,不计空气阻力,求:(1)小球被抛出时的速度v0;(2)小球到达半

39、圆轨道最低点B时,对轨道的压力大小;(3)小球从C到D过程中摩擦力做的功W。解析:(1)小球运动到A点时,速度与水平方向的夹角为,如图所示。则有v122gh由几何关系得v0tan v1联立以上各式解得v0。(2)A、B间竖直高度HR(1cos )设小球到达B点时的速度为v,则从抛出点到B点过程中,根据机械能守恒有mv02mg(Hh)mv2小球在B点,有FNmgm联立解得FN5.6mg由牛顿第三定律知,小球在B点对轨道的压力大小是FNFN5.6mg,方向竖直向下。(3)小球在整个运动过程中,重力做功为零,根据动能定理知:小球沿斜面上滑过程中克服摩擦力做的功等于小球做平抛运动的初动能,有W0mv02mgh。答案:(1)(2)5.6mg,方向竖直向下(3)mgh

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁