电流转速双闭环直流调速系统matlab仿真实验.docx

上传人:蓝**** 文档编号:92215341 上传时间:2023-05-31 格式:DOCX 页数:30 大小:1.06MB
返回 下载 相关 举报
电流转速双闭环直流调速系统matlab仿真实验.docx_第1页
第1页 / 共30页
电流转速双闭环直流调速系统matlab仿真实验.docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《电流转速双闭环直流调速系统matlab仿真实验.docx》由会员分享,可在线阅读,更多相关《电流转速双闭环直流调速系统matlab仿真实验.docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、I任务书1.设计题目转速、电流双闭环直流调速系统的设计2.设计任务某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为:直流电动机:Un=440V,In=365A,nN=950r/min,Ra=0.04,电枢电路总电阻 R=0.0825,电枢电路总电感 L=3.0mH,电流允许过载倍数=1.5,折算到电动机飞轮惯量 GD2=20Nm2。晶闸管整流装置放大倍数 Ks=40,滞后时间常数 Ts=0.0017s电流反馈系数=0.274V/A (10V/1.5IN)转速反馈系数=0.0158V min/r (10V/nN)滤波时间常数取 Toi=0.002s,Ton=0.01sUnm

2、=Uim =Ucm=15V;调节器输入电阻 Ra=40k3.设计要求(1)稳态指标:无静差(2)动态指标:电流超调量t 5%;采用转速微分负反馈使转速超调量等于 0。II目录任务书. I目录. II前言. 1第一章 双闭环直流调速系统的工作原理. 21.1 双闭环直流调速系统的介绍. 21.2 双闭环直流调速系统的组成. 31.3 双闭环直流调速系统的稳态结构图和静特性. 41.4 双闭环直流调速系统的数学模型. 51.4.1 双闭环直流调速系统的动态数学模型. 51.4.2 起动过程分析. 6第二章 调节器的工程设计. 92.1 调节器的设计原则. 92.2 型系统与型系统的性能比较. 10

3、2.3 电流调节器的设计. 112.3.1 结构框图的化简和结构的选择. 112.3.2 时间常数的计算. 122.3.3 选择电流调节器的结构. 132.3.4 计算电流调节器的参数. 132.3.5 校验近似条件. 142.3.6 计算调节器的电阻和电容. 152.4 转速调节器的设计. 152.4.1 转速环结构框图的化简. 152.4.2 确定时间常数. 172.4.3 选择转速调节器结构. 172.4.4 计算转速调节器参数. 172.4.5 检验近似条件. 182.4.6 计算调节器电阻和电容. 19第三章 Simulink 仿真. 203.1 电流环的仿真设计. 203.2 转速

4、环的仿真设计. 213.3 双闭环直流调速系统的仿真设计. 22第四章 设计心得. 24参考文献. 251前言许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态、动态性能。而直流调速系统调速范围广、静差率小、稳定性好以及具有良好的动态性能,在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。双闭环直流调速系统是直流调速控制系统中发展得最为成熟,应用非常广泛的电力传动系统。它具有动态响应快、抗干扰能力强等优点。我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。采用转速负反馈和 PI 调节器的单闭环的调速系统

5、可以再保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。在单闭环系统中,只有电流截止至负反馈环节是专门用来控制电流的。但它只是在超过临界电流值以后,强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。在实际工作中,我们希望在电机最大电流限制的条件下,充分利用电机的允许过载能力,最好是在过度过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从

6、而转入稳态运行。这时,启动电流成方波形,而转速是线性增长的。这是在最大电流转矩的条件下调速系统所能得到的最快的启动过程。随着社会化大生产的不断发展,电力传动装置在现代化工业生产中的得到广泛应用,对其生产工艺、产品质量的要求不断提高,这就需要越来越多的生产机械能够实现制动调速,因此我们就要对这样的自动调速系统作一些深入的了解和研究。 本次设计的课题是双闭环晶闸管不可逆直流调速系统,包括主电路和控制回路。主电路由晶闸管构成,控制回路主要由检测电路,驱动电路构成,检测电路又包括转速检测和电流检测等部分。2第一章 双闭环直流调速系统的工作原理1.1双闭环直流调速系统的介绍双闭环(转速环、电流环)直流调

7、速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强的优点。我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。采用转速负反馈和 PI 调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。在单闭环系统中,只有电流截止负反馈环节是专门用来控制电流的。但它只是在超过临界电流 I dcr值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的

8、控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图 1-(a)所示。当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖长。IdnIdmIdn IdmIdcrnnIdLIdLO(a)tO(b)t(a)带电流截止负反馈的单闭环调速系统起动过程(b)理想快速起动过程图 1 调速系统起动过程的电流和转速波形在实际工作中,我们希望在电机最大电流(转矩)受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。

9、这样的理想起动过程波形如图 1-(b)所示,这时,启动电流成方波形,而转速是线性增长的。这是在最3大电流(转矩)受限的条件下调速系统所能得到的最快的起动过程。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值 I dm的恒流过程,按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么采用电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不再靠电流负反馈发挥主作用,因此我们采用双闭环调速系统。这样就能做到既存在转速和

10、电流两种负反馈作用又能使它们作用在不同的阶段。1.2双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如图 2 所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。从闭环结构上看,电流调节环在里面,叫做内环;转速环在外面,叫做外环。这样就形成了转速、电流双闭环调速系统。该双闭环调速系统的两个调节器 ASR 和 ACR 一般都采用 PI 调节器。因为 PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能

11、兼顾快速响应和消除静差两方面的要求。一般的调速系统要求以稳和准为主,采用 PI 调节器便能保证系统获得良好的静态和动态性能。图 2 转速、电流双闭环直流调速系统Un *= Un =a n =a nUi* = Ui = b I由式(1-1)可得:n= a =4图中 U*n、Un转速给定电压和转速反馈电压;U*i、Ui电流给定电压和电流反馈电压; ASR转速调节器; ACR电流调节器;TG测速发电机;TA电流互感器;UPE电力电子变换器1.3双闭环直流调速系统的稳态结构图和静特性bIdU*n+-UnASR U*i+Ui -ACR UctUPE Ud0+KsR-IdRE1/Cena图 3:双闭环直流

12、调速系统的稳态结构图双闭环直流系统的稳态结构图如图 3 所示,分析双闭环调速系统静特性的关键是掌握 PI 调节器的稳态特征。一般存在两种状况:饱和输出达到限幅值;不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,相当与使该调节环开环。当调节器不饱和时,PI 作用使输入偏差电压DU 在稳太时总是为零。实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对静特性来说,只有转速调节器饱和与不饱和两种情况。1转速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此,0(1-1)d(1-2)U *nn0 I,这就是说,CA 段特性从理想空载状态

13、的Id=0 一直延续到= I。而I=其中,最大电流 I于nn的情况,因为如果nn,ASR 将退出饱和状态。5从而得到静特性曲线的 CA 段。与此同时,由于 ASR 不饱和,Ui * 0, DU下加速,使转速超调。超调后, fnn 0,使 ASR 退出饱和,UU 与U其输出电压(也就是 ACR 的给定电压) gi 才从限幅值降下来, kd也随之降了下来,但是,由于 I a到 I a I L 时,电动机才开始在负载的阻力下减速,知道稳定(如果系统的动态品质不够好,可能振荡几次以后才稳定)。在这个阶段中ASR 与ACR 同时发挥作用,由于转速调节器在外环,ASR 处于主导地位,而 ACR 的作用则力

14、图使gi 的变化。Ia稳态时,转速等于给定值ng ,电枢电流I a 等于负载电流 I L ,ASR 和 ACR 的输入偏差电压都为零,但由于积分作用,它们都有恒定的输出电压。ASR 的输出= Ce n(1-5)9电压为U gi = U fi = b I L(1-4)ACR 的输出电压为Ukg+ IKsL RS由上述可知,双闭环调速系统,在启动过程的大部分时间内,ASR 处于饱和限幅状态,转速环相当于开路,系统表现为恒电流调节,从而可基本上实现理想过程。双闭环调速系统的转速响应一定有超调,只有在超调后,转速调节器才能退出饱和,使在稳定运行时ASR 发挥调节作用,从而使在稳态和接近稳态运行中表现为

15、无静差调速。故双闭环调速系统具有良好的静态和动态品质。综上所述,双闭环调速系统的起动过程有以下三个特点:(1)饱和非线形控制:随着 ASR 的饱和与不饱和,整个系统处于完全不同的两种状态,在不同情况下表现为不同结构的线形系统,只能采用分段线形化的方法来分析,不能简单的用线形控制理论来笼统的设计这样的控制系统。(2)转速超调:当转速调节器 ASR 采用 PI 调节器时,转速必然有超调。转速略有超调一般是容许的,对于完全不允许超调的情况,应采用其他控制方法来抑制超调。(3)准时间最优控制:在设备允许条件下实现最短时间的控制称作“时间最优控制”,对于电力拖动系统,在电动机允许过载能力限制下的恒流起动

16、,就是时间最优控制。但由于在起动过程、两个阶段中电流不能突变,实际起动过程与理想启动过程相比还有一些差距,不过这两段时间只占全部起动时间中很小的成分,无伤大局,可称作“准时间最优控制”。采用饱和非线性控制的方法实现准时间最优控制是一种很有实用价值的控制策略,在各种多环控制中得到普遍应用。第二章 调节器的工程设计2.1调节器的设计原则为了保证转速发生器的高精度和高可靠性,系统采用转速变化率反馈和电流反馈的双闭环电路主要考虑以下问题:1。 保证转速在设定后尽快达到稳速状态;2。 保证最优的稳定时间;(103。 减小转速超调量。为了解决上述问题,就必须对转速、电流两个调节器的进行优化设计,以满足系统

17、的需要。建立调节器工程设计方法所遵循的原则是:1.概念清楚、易懂;2.计算公式简明、好记;3.不仅给出参数计算的公式,而且指明参数调整的方向;4.能考虑饱和非线性控制的情况,同样给出简明的计算公式;5.适用于各种可以简化成典型系统的反馈控制系统。直流调速系统调节器参数的工程设计包括确定典型系统、选择调节器类型、计算调节器参数、计算调节器电路参数、校验等内容。在选择调节器结构时,只采用少量的典型系统,它的参数与系统性能指标的关系都已事先找到,具体选择参数时只须按现成的公式和表格中的数据计算一下就可以了,这样就使设计方法规范化,大大减少了设计工作量。2.2型系统与型系统的性能比较许多控制系统的开环

18、传递函数可表示为:W(s)=Ks rmj =1n)t j s + 1)T s + 1ji=1根据 W(s)中积分环节个数的不同,将该控制系统称为 0 型、型、型系统。自动控制理论证明,0 型系统在稳态时是有差的,而型及型以上的系统很难稳定。因此,通常为了保证稳定性和一定的稳态精度,多用型、型系统,典型的型、型系统其开环传递函数为W (s) =Ks(Ts + 1)(2-1)W (s) =K (ts + 1) s2(Ts + 1)(2-2)11一般说来典型型系统在动态跟随性能上可以做到超调小,但抗忧性能差;而典型型系统的超调量相对要大一些而抗扰性能却比较好。基于此,在转速-电流双闭环调速系统中,电

19、流环的一个重要作用是保持电枢电流在动态过程中不超过允许值,即能否抑制超调是设计电流环首先要考虑的问题,所以一般电流环多设计为型系统,电流调节的设计应以此为限定条件。至于转速环,稳态无静差是最根本的要求,所以转速环通常设计为型系统。在双闭环调速系统中,整流装置滞后时间常数 Ts 和电流滤波时间常数 Toi 一般都比电枢回路电磁 Tl 小很多,可将前两者近似为一个惯性环节,取Ti=Ts+Toi。这样,经过小惯性环节的近似处理后,电流环的控制对象是一个双惯性环节,要将其设计成典型型系统,同理,经过小惯性环节的近似处理后,转速环的被控对象形如式(2-1)。如前所述,转速环应设计成型系统,所以转速调节器

20、也就设计成 PI 型调节器,如下式所示:W (s) = K (ts + 1)ts(2-3)2.3电流调节器的设计2.3.1结构框图的化简和结构的选择在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即 DE 0。这时,电流环如图 7 所示。U*i(s)1T0is+1+ACRUi (s)Uc (s)Ks Tss+1bT0is+1Ud0(s) 1/RTl s+1Id (s)图 7 电流环的动态结构框图及其化简一般都比 Tl 小得多,可以当作小惯性群而近似地看作TmT12忽略反电动势对电流环作用的近似条件是:wc i 31lw式中c i -电流环开环频率特性的截止频率。如果把给定滤波和反

21、馈滤波两个环节都等效地移到环内,同时把给定信号改成 U*i(s) /b ,则电流环便等效成单位负反馈系统。U*i(s)b+bT0is+1ACRUc (s)Ks /R (Tss+1)(Tl s+1)Id (s)图 8 等效成单位负反馈系统最后,由于 Ts和 T0i是一个惯性环节,其时间常数为Ti= Ts+ Toi则电流环结构图最终简化成图 8U*i(s)b+ACRUc (s)b Ks /R(Tls+1)(TS is+1)Id (s)图 8 小惯性环节的近似处理图2-23c2.3.2时间常数的计算1、直流电机参数Ce = UNINRa nN= 0。4478min/r375CeCKi(t132、整流

22、装置滞后时间常数 T =0.0017s。s3、电流滤波时间常数 T =0.002s。oi4、电流环小时间常数之和 T =T +T =0。0017s +0。002s =0.0037ssoiL 0.0035、电枢回路电磁时间常数Tl = R = 0.03640.08256、电力拖动系统机电时间常数TmGD2Rm=1292.7 * 0.0825375 * 0.4478 * 0.4478 * 30p= 0.14852.3.3选择电流调节器的结构要求电流无静差,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流

23、环应以跟随性能为主,应选用典型 I 型系统。电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用 PI型的电流调节器,其传递函数可以写成式中s + 1) W (s) =iACRt siKi 电流调节器的比例系数;ti 电流调节器的超前时间常数。(2-5)T检查对电源电压的抗扰性能: l =Ti0.03640.0037= 9.84 ,参照典型型系统动态抗扰性能指标与参数的关系表格,可以看出各项指标都是可以接受的。2.3.4计算电流调节器的参数电流调节器超前时间常数:t =T =0.07s。ilTmT3 TsT14电流环开环增益:要求 5%时,应取 K T =0.5,因此iI iKI= 0.5T i=0.50.0037= 135.1s -1于是,ACR 的比例系数为:K

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁