《2022年福建厦门中考数学试题(含答案).docx》由会员分享,可在线阅读,更多相关《2022年福建厦门中考数学试题(含答案).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、年寒窗苦读日,只盼金榜题名时,祝你考试拿高分,鲤鱼跳龙门!加油!2022年福建厦门中考数学试题及答案一、选择题:本题共10小题,每小题4分,共40分在每小题给出的四个选项中,只有一项是符合要求的1. 11的相反数是( )A. 11B. C. D. 11【答案】D2. 如图所示的圆柱,其俯视图是()A. B. C. D. 【答案】A3. 5G应用在福建省全面铺开,助力千行百业迎“智”变,截止2021年底,全省5G终端用户达1397.6万户,数据13 976 000用科学记数法表示为()A. B. C. D. 【答案】C4. 美术老师布置同学们设计窗花,下列作品为轴对称图形的是( )A. B. C
2、. D. 【答案】A5. 如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A. B. C. D. 【答案】B6. 不等式组的解集是( )A. B. C. D. 【答案】C7. 化简的结果是( )A. B. C. D. 【答案】C8. 2021年福建省的环境空气质量达标天数位居全国前列,下图是福建省10个地区环境空气质量综合指数统计图综合指数越小,表示环境空气质量越好依据综合指数,从图中可知环境空气质量最好的地区是( )A. B. C. D. 【答案】D9. 如图所示的衣架可以近似看成一个等腰三角形ABC,其中ABAC,BC44cm,则高AD约为( )(参考数据:,)A. 9.9
3、0cmB. 11.22cmC. 19.58cmD. 22.44cm【答案】B10. 如图,现有一把直尺和一块三角尺,其中,AB8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )A. 96B. C. 192D. 【答案】B二、填空题:本题共6小题,每小题4分,共24分11. 四边形的外角和等于_.【答案】36012. 如图,在ABC中,D,E分别是AB,AC的中点若BC12,则DE的长为_【答案】613. 一个不透明的袋中装有3个红球和2个白球,这些球除颜色外无其他差别现随机从袋中摸出一个球,这个球是红球的概率是_【答案】14
4、. 已知反比例函数的图象分别位于第二、第四象限,则实数k的值可以是_(只需写出一个符合条件的实数)【答案】-5(答案不唯一 负数即可)15. 推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x,令,等式两边都乘以x,得等式两边都减,得等式两边分别分解因式,得等式两边都除以,得等式两边都减m,得x0.所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是_【答案】16. 已知抛物线与x轴交于A,B两点,抛物线与x轴交于C,D两点,其中n0,若AD2BC,则n的值为_【答案】8三、解答
5、题:本题共9小题,共86分解答应写出文字说明、证明过程或演算步骤17. 计算:【答案】【详解】解:原式18. 如图,点B,F,C,E在同一条直线上,BFEC,ABDE,BE求证:AD【答案】见解析【详解】证明:BFEC,即BCEF在ABC和DEF中,AD19. 先化简,再求值:,其中【答案】,【详解】解:原式当时,原式20. 学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组调查组设计了一份问卷,并实施两次调查活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),并分组整理,制成如下条形
6、统计图活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图,其中A组为,B组为,C组为,D组为,E组为,F组为(1)判断活动前、后两次调查数据的中位数分别落在哪一组;(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数【答案】(1)活动前调查数据的中位数落在C组;活动后调查数据的中位数落在D组(2)1400人【小问1详解】活动前,一共调查了50名同学,中位数是第25和26个数据的平均数,活动前调查数据的中位数落在C组;活动后,A、B、C三组的人数为(名),D组人数为:(名),
7、15+15=30(名)活动后一共调查了50名同学,中位数是第25和26个数据的平均数,活动后调查数据的中位数落在D组;【小问2详解】一周的课外劳动时间不小于3h的比例为,(人);答:根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h的人数为1400人21. 如图,ABC内接于O,交O于点D,交BC于点E,交O于点F,连接AF,CF(1)求证:ACAF;(2)若O的半径为3,CAF30,求的长(结果保留)【答案】(1)见解析(2)【小问1详解】,四边形ABED是平行四边形,BD又AFCB,ACFD,ACAF【小问2详解】连接AO,CO由(1)得AFCACF,又CAF30,的长22.
8、在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍已知绿萝每盆9元,吊兰每盆6元(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值【答案】(1)购买绿萝38盆,吊兰8盆(2)369元【小问1详解】设购买绿萝盆,购买吊兰盆计划购买绿萝和吊兰两种绿植共46盆采购组计划将预算经费390元全部用于购买绿萝和吊兰,绿萝每盆9元,吊兰每盆6元得方程组解方程组
9、得3828,符合题意购买绿萝38盆,吊兰8盆;【小问2详解】设购买绿萝盆,购买吊兰吊盆,总费用为,总费用要低于过390元,绿萝盆数不少于吊兰盆数的2倍将代入不等式组得的最大值为15为一次函数,随值增大而减小时,最小元故购买两种绿植最少花费为元23. 如图,BD是矩形ABCD的对角线(1)求作A,使得A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与A相切于点E,CFBD,垂足为F若直线CF与A相切于点G,求的值【答案】(1)作图见解析(2)【小问1详解】解:如图所示,A即为所求作:【小问2详解】解:根据题意,作出图形如下:设,A的半径为r,BD与A相切于点
10、E,CF与A相切于点G,AEBD,AGCG,即AEFAGF90,CFBD,EFG90,四边形AEFG是矩形,又,四边形AEFG是正方形,在RtAEB和RtDAB中,在RtABE中,四边形ABCD是矩形,ABCD,又,在RtADE中,即,即,即tanADB的值为24. 已知,ABAC,ABBC(1)如图1,CB平分ACD,求证:四边形ABDC是菱形;(2)如图2,将(1)中的CDE绕点C逆时针旋转(旋转角小于BAC),BC,DE的延长线相交于点F,用等式表示ACE与EFC之间的数量关系,并证明;(3)如图3,将(1)中的CDE绕点C顺时针旋转(旋转角小于ABC),若,求ADB的度数【答案】(1)
11、见解析(2),见解析(3)30【小问1详解】,ACDC,ABAC,ABCACB,ABDC,CB平分ACD,四边形ABDC是平行四边形,又ABAC,四边形ABDC是菱形;【小问2详解】结论:证明:,ABAC,;【小问3详解】在AD上取一点M,使得AMCB,连接BM,ABCD,BMBD,设,则,CACD, ,即ADB3025. 在平面直角坐标系xOy中,已知抛物线经过A(4,0),B(1,4)两点P是抛物线上一点,且在直线AB的上方(1)求抛物线的解析式;(2)若OAB面积是PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,交AB于点D记CDP,CPB,CBO的面积分别为,判断是否存在
12、最大值若存在,求出最大值;若不存在,请说明理由【答案】(1)(2)存在,或(3,4)(3)存在,【小问1详解】解:(1)将A(4,0),B(1,4)代入,得,解得所以抛物线的解析式为【小问2详解】设直线AB的解析式为,将A(4,0),B(1,4)代入,得,解得所以直线AB的解析式为过点P作PMx轴,垂足为M,PM交AB于点N过点B作BEPM,垂足为E所以因为A(4,0),B(1,4),所以因为OAB的面积是PAB面积的2倍,所以,设,则所以,即,解得,所以点P的坐标为或(3,4)【小问3详解】记CDP,CPB,CBO的面积分别为,则如图,过点分别作轴的垂线,垂足分别,交于点,过作的平行线,交于点,设直线AB的解析式为设,则整理得时,取得最大值,最大值为