《2016山东省枣庄市中考数学真题(含答案).docx》由会员分享,可在线阅读,更多相关《2016山东省枣庄市中考数学真题(含答案).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、年寒窗苦读日,只盼金榜题名时,祝你考试拿高分,鲤鱼跳龙门!加油!2016山东省枣庄市中考数学真题及答案一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。1(3分)(2016枣庄)下列计算,正确的是()Aa2a2=2a2Ba2+a2=a4C(a2)2=a4D(a+1)2=a2+12(3分)(2016枣庄)如图,AOB的一边OA为平面镜,AOB=3736,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则DEB的度数是()A7536B7512C7436D741
2、23(3分)(2016枣庄)某中学篮球队12名队员的年龄如表:年龄(岁)13141516人数1542关于这12名队员年龄的年龄,下列说法错误的是()A众数是14B极差是3C中位数是14.5D平均数是14.84(3分)(2016枣庄)如图,在ABC中,AB=AC,A=30,E为BC延长线上一点,ABC与ACE的平分线相交于点D,则D的度数为()A15B17.5C20D22.55(3分)(2016枣庄)已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D56(3分)(2016枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图
3、),请你根据图形判断涂成绿色一面的对面的颜色是()A白B红C黄D黑7(3分)(2016枣庄)如图,ABC的面积为6,AC=3,现将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长不可能是()A3B4C5.5D108(3分)(2016枣庄)若关于x的一元二次方程x22x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()ABCD9(3分)(2016枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DHAB于H,则DH等于()ABC5D410(3分)(2016枣庄)已知点P(a+1,+1)关于原点的对称点在第四象限,则a的取值
4、范围在数轴上表示正确的是()ABCD11(3分)(2016枣庄)如图,AB是O的直径,弦CDAB,CDB=30,CD=2,则阴影部分的面积为()A2BCD12(3分)(2016枣庄)如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。13(4分)(2016枣庄)计算:21+|2|=_14(4分)(2016枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,MAD
5、=45,MBC=30,则警示牌的高CD为_米(结果精确到0.1米,参考数据:=1.41,=1.73)15(4分)(2016枣庄)如图,在半径为3的O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=_16(4分)(2016枣庄)如图,点A的坐标为(4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果ACD=90,则n的值为_17(4分)(2016枣庄)如图,在ABC中,C=90,AC=BC=,将ABC绕点A顺时针方向旋转60到ABC的位置,连接CB,则CB=_18(4分)(2016枣庄)一列数a1,a2,a3,满足条件:a1=,an=(n2,且n为整数),则a20
6、16=_三、解答题:本大题共7小题,满分60分,解答时,要写出必要的文字说明、证明过程或演算步骤。19(8分)(2016枣庄)先化简,再求值:,其中a是方程2x2+x3=0的解20(8分)(2016枣庄)Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:Pn=(n2an+b)(其中a,b是常数,n4)(1)通过画图,可得:四边形时,P4=_;五边形时,P5=_(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值21(8分)(2016枣庄)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户具名的生活用水情况,他从
7、中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表: 月均用水量 2x3 3x4 4x5 5x6 6x7 7x8 8x9 频数 2 12 10 3 2 百分比 4% 24%30% 20% 6% 4%(1)请根据题中已有的信息补全频数分布:_,_,_;(2)如果家庭月均用水量在5x8范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)记月均用水量在2x3范围内的两户为a1,a2,在7x8范围内的3户b1、b2、b3,从这5户家庭中任意抽取2户,试完成下表,并求出抽取出的2户家庭来自不同范围的概率 a1 a2 b1 b2 b3 a1 a2 b1
8、b2 b322(8分)(2016枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k0)的图象与BC边交于点E(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,EFA的面积最大,最大面积是多少?23(8分)(2016枣庄)如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBA=C(1)求证:PB是O的切线;(2)连接OP,若OPBC,且OP=8,O的半径为2,求BC的长24(10分)(2016枣庄)如图,把EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP
9、=6,EF=6,BAD=60,且AB6(1)求EPF的大小;(2)若AP=10,求AE+AF的值;(3)若EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值25(10分)(2016枣庄)如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=1上的一个动点,求使BPC为直角三角形的点P的坐标
10、2016年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。1(3分)(2016枣庄)下列计算,正确的是()Aa2a2=2a2Ba2+a2=a4C(a2)2=a4D(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D【解答】解:A、a2a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此
11、选项错误;故选:C2(3分)(2016枣庄)如图,AOB的一边OA为平面镜,AOB=3736,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则DEB的度数是()A7536B7512C7436D7412【分析】过点D作DFAO交OB于点F根据题意知,DF是CDE的角平分线,故1=3;然后又由两直线CDOB推知内错角1=2;最后由三角形的内角和定理求得DEB的度数【解答】解:过点D作DFAO交OB于点F入射角等于反射角,1=3,CDOB,1=2(两直线平行,内错角相等);2=3(等量代换);在RtDOF中,ODF=90,AOB=3736,2=903736=52
12、24;在DEF中,DEB=18022=7512故选B3(3分)(2016枣庄)某中学篮球队12名队员的年龄如表:年龄(岁)13141516人数1542关于这12名队员年龄的年龄,下列说法错误的是()A众数是14B极差是3C中位数是14.5D平均数是14.8【分析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案【解答】解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:1613=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+145+154+162)1214.5,故选项D错误,符合题意故选:D4(3分)(2016枣
13、庄)如图,在ABC中,AB=AC,A=30,E为BC延长线上一点,ABC与ACE的平分线相交于点D,则D的度数为()A15B17.5C20D22.5【分析】先根据角平分线的定义得到1=2,3=4,再根据三角形外角性质得1+2=3+4+A,1=3+D,则21=23+A,利用等式的性质得到D=A,然后把A的度数代入计算即可【解答】解:ABC的平分线与ACE的平分线交于点D,1=2,3=4,ACE=A+ABC,即1+2=3+4+A,21=23+A,1=3+D,D=A=30=15故选A5(3分)(2016枣庄)已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D5【分析】根据
14、关于x的方程x2+3x+a=0有一个根为2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【解答】解:关于x的方程x2+3x+a=0有一个根为2,设另一个根为m,2+m=,解得,m=1,故选B6(3分)(2016枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A白B红C黄D黑【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论【解答】解:涂有绿色一面的邻边是白,黑,红,蓝,涂成绿色一面的对面的颜色是黄色,故选C7(3分)(2016枣庄)如图,ABC的面
15、积为6,AC=3,现将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长不可能是()A3B4C5.5D10【分析】过B作BNAC于N,BMAD于M,根据折叠得出CAB=CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4,得出选项即可【解答】解:如图:过B作BNAC于N,BMAD于M,将ABC沿AB所在直线翻折,使点C落在直线AD上的C处,CAB=CAB,BN=BM,ABC的面积等于6,边AC=3,ACBN=6,BN=4,BM=4,即点B到AD的最短距离是4,BP的长不小于4,即只有选项A的3不正确,故选A8
16、(3分)(2016枣庄)若关于x的一元二次方程x22x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()ABCD【分析】根据一元二次方程x22x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可【解答】解:x22x+kb+1=0有两个不相等的实数根,=44(kb+1)0,解得kb0,Ak0,b0,即kb0,故A不正确;Bk0,b0,即kb0,故B正确;Ck0,b0,即kb0,故C不正确;Dk0,b=0,即kb=0,故D不正确;故选:B9(3分)(2016枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DHAB于H,则D
17、H等于()ABC5D4【分析】根据菱形性质求出AO=4,OB=3,AOB=90,根据勾股定理求出AB,再根据菱形的面积公式求出即可【解答】解:四边形ABCD是菱形,AO=OC,BO=OD,ACBD,AC=8,DB=6,AO=4,OB=3,AOB=90,由勾股定理得:AB=5,S菱形ABCD=,DH=,故选A10(3分)(2016枣庄)已知点P(a+1,+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()ABCD【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案【解答】解:点P(a+1,+1)关于原点的对称点坐标为:(a1,1),该点在第四象限
18、,解得:a1,则a的取值范围在数轴上表示为:故选:C11(3分)(2016枣庄)如图,AB是O的直径,弦CDAB,CDB=30,CD=2,则阴影部分的面积为()A2BCD【分析】要求阴影部分的面积,由图可知,阴影部分的面积等于扇形COB的面积,根据已知条件可以得到扇形COB的面积,本题得以解决【解答】解:CDB=30,COB=60,又弦CDAB,CD=2,OC=,故选D12(3分)(2016枣庄)如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个【分析】首先根据二次函数y=a
19、x2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y0,可得a+b+c0;再根据图象开口向下,可得a0,图象的对称轴为x=,可得,b0,所以b=3a,ab;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得0,所以b24ac0,4acb20,据此解答即可【解答】解:二次函数y=ax2+bx+c图象经过原点,c=0,abc=0正确;x=1时,y0,a+b+c0,不正确;抛物线开口向下,a0,抛物线的对称轴是x=,b0,b=3a,又a0,b0,ab,正确;二次函数y=ax2+bx+c图象与x轴有两个交点,0,b24ac0,4acb20,正确;综上,可得正确结论
20、有3个:故选:C二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。13(4分)(2016枣庄)计算:21+|2|=2【分析】直接利用负整数指数幂的性质以及结合绝对值的性质和二次根式的性质分别化简求出答案【解答】解:21+|2|=3+22=2故答案为:214(4分)(2016枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,MAD=45,MBC=30,则警示牌的高CD为2.9米(结果精确到0.1米,参考数据:=1.41,=1.73)【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2
21、MC)2,代入数可得答案【解答】解:由题意可得:AM=4米,MAD=45,DM=4m,AM=4米,AB=8米,MB=12米,MBC=30,BC=2MC,MC2+MB2=(2MC)2,MC2+122=(2MC)2,MC=4,则DC=442.9(米),故答案为:2.915(4分)(2016枣庄)如图,在半径为3的O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=2【分析】连接BC可得RTACB,由勾股定理求得BC的长,进而由tanD=tanA=可得答案【解答】解:如图,连接BC,AB是O的直径,ACB=90,AB=6,AC=2,BC=4,又D=A,tanD=tanA=2故答
22、案为:216(4分)(2016枣庄)如图,点A的坐标为(4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果ACD=90,则n的值为【分析】由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(n,0),C点的坐标为(0,n),由A点的坐标为(4,0),ACD=90,用勾股定理列出方程求出n的值【解答】解:直线y=x+n与坐标轴交于点B,C,B点的坐标为(n,0),C点的坐标为(0,n),A点的坐标为(4,0),ACD=90,AB2=AC2+BC2,AC2=AO2+OC2,BC2=0B2+0C2,AB2=AO2+OC2+0B2+0C2,即(n+4)2=42+n2+(n)2+n2解得n=
23、,n=0(舍去)故答案为:17(4分)(2016枣庄)如图,在ABC中,C=90,AC=BC=,将ABC绕点A顺时针方向旋转60到ABC的位置,连接CB,则CB=1【分析】连接BB,根据旋转的性质可得AB=AB,判断出ABB是等边三角形,根据等边三角形的三条边都相等可得AB=BB,然后利用“边边边”证明ABC和BBC全等,根据全等三角形对应角相等可得ABC=BBC,延长BC交AB于D,根据等边三角形的性质可得BDAB,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、CD,然后根据BC=BDCD计算即可得解【解答】解:如图,连接BB,ABC绕点A顺时针方向旋转6
24、0得到ABC,AB=AB,BAB=60,ABB是等边三角形,AB=BB,在ABC和BBC中,ABCBBC(SSS),ABC=BBC,延长BC交AB于D,则BDAB,C=90,AC=BC=,AB=2,BD=2=,CD=2=1,BC=BDCD=1故答案为:118(4分)(2016枣庄)一列数a1,a2,a3,满足条件:a1=,an=(n2,且n为整数),则a2016=1【分析】根据题意求出a1,a2,a3,的值,找出循环规律即可求解【解答】解:a1=,a2=2,a3=1,a4=可以发现:数列以,2,1循环出现,20163=672,所以a2016=1故答案为1三、解答题:本大题共7小题,满分60分,
25、解答时,要写出必要的文字说明、证明过程或演算步骤。19(8分)(2016枣庄)先化简,再求值:,其中a是方程2x2+x3=0的解【分析】先化简代数式、解方程,然后结合分式的性质对a的值进行取舍,并代入求值即可【解答】解:原式=,=,=由2x2+x3=0得到:x1=1,x2=,又a10即a1,所以a=,所以原式=20(8分)(2016枣庄)Pn表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么Pn与n的关系式是:Pn=(n2an+b)(其中a,b是常数,n4)(1)通过画图,可得:四边形时,P4=1;五边形时,P5=5(2)请根据四边形和五边形对角线交点的个数,结合关
26、系式,求a,b的值【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于a、b的二元一次方程组,解方程组即可得出结论【解答】解:(1)画出图形如下由画形,可得:当n=4时,P4=1;当n=5时,P5=5故答案为:1;5(2)将(1)中的数值代入公式,得:,解得:21(8分)(2016枣庄)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户具名的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表: 月均用水量 2x3 3x4 4x5 5x6 6x7 7x8 8x9 频数 2 12 10
27、 3 2 百分比 4% 24%30% 20% 6% 4%(1)请根据题中已有的信息补全频数分布:15,6,12%;(2)如果家庭月均用水量在5x8范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)记月均用水量在2x3范围内的两户为a1,a2,在7x8范围内的3户b1、b2、b3,从这5户家庭中任意抽取2户,试完成下表,并求出抽取出的2户家庭来自不同范围的概率 a1 a2 b1 b2 b3 a1 a2 b1 b2 b3【分析】(1)根据频数的相关知识列式计算即可(2)用总体乘以样本中中等用水量家庭的百分比即可;(3)先完成表格,再求概率即可【解答】解:(1)503
28、0%=15,50212151032=6,650=0.12=12%,故答案为:15,6,12%;(2)中等用水量家庭大约有450(20%+12%+6%)=171(户);(3)抽取出的2户家庭来自不同范围的概率:P=22(8分)(2016枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k0)的图象与BC边交于点E(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,EFA的面积最大,最大面积是多少?【分析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的
29、面积,得到关于k的二次函数,利用二次函数求出最值即可【解答】解:(1)在矩形OABC中,OA=3,OC=2,B(3,2),F为AB的中点,F(3,1),点F在反比例函数y=(k0)的图象上,k=3,该函数的解析式为y=(x0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),SEFA=AFBE=k(3k),=kk2=(k26k+99)=(k3)2+当k=3时,S有最大值S最大值=23(8分)(2016枣庄)如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBA=C(1)求证:PB是O的切线;(2)连接OP,若OPBC,且OP=8,O的半径为2,求BC的长【分析】(
30、1)连接OB,由圆周角定理得出ABC=90,得出C+BAC=90,再由OA=OB,得出BAC=OBA,证出PBA+OBA=90,即可得出结论;(2)证明ABCPBO,得出对应边成比例,即可求出BC的长【解答】(1)证明:连接OB,如图所示:AC是O的直径,ABC=90,C+BAC=90,OA=OB,BAC=OBA,PBA=C,PBA+OBA=90,即PBOB,PB是O的切线;(2)解:O的半径为2,OB=2,AC=4,OPBC,C=BOP,又ABC=PBO=90,ABCPBO,即,BC=224(10分)(2016枣庄)如图,把EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,
31、AC上,已知EP=FP=6,EF=6,BAD=60,且AB6(1)求EPF的大小;(2)若AP=10,求AE+AF的值;(3)若EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值【分析】(1)根据锐角三角函数求出FPG,最后求出EPF(2)先判断出RtPMERtPNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值【解答】解:(1)过点P作PGEF于点G,如图1所示PE=PF=6,EF=6,FG=EG=3,FPG=EPG=EPF在RtFPG中,sinFPG=,FPG=60,EPF=120(2)过点P作PMAB于点M,
32、作PNAD于点N,如图2所示AC为菱形ABCD的对角线,DAC=BAC,AM=AN,PM=PN在RtPME和RtPNF中,PM=PN,PE=PF,RtPMERtPNF,ME=NF又AP=10,PAM=DAB=30,AM=AN=APcos30=10=5,AE+AF=(AM+ME)+(ANNF)=AM+AN=10(3)如图,当EFP的三个顶点分别在AB,AD,AC上运动,点P在P1,P之间运动,P1O=PO=3,AO=9,AP的最大值为12,AP的最小值为6,25(10分)(2016枣庄)如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,
33、与x轴交于点B(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=1上的一个动点,求使BPC为直角三角形的点P的坐标【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=1的交点为M,则此时MA+MC的值最小把x
34、=1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(1,t),又因为B(3,0),C(0,3),所以可得BC2=18,PB2=(1+3)2+t2=4+t2,PC2=(1)2+(t3)2=t26t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标【解答】解:(1)依题意得:,解之得:,抛物线解析式为y=x22x+3对称轴为x=1,且抛物线经过A(1,0),把B(3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=1的交点为M,则此时MA+MC的值最小把x=1代入直线y=x+3得,y=2,M(1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(1,2);(3)设P(1,t),又B(3,0),C(0,3),BC2=18,PB2=(1+3)2+t2=4+t2,PC2=(1)2+(t3)2=t26t+10,若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t26t+10解之得:t=2;若点C为直角顶点,则BC2+PC2=PB2即:18+t26t+10=4+t2解之得:t=4,若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t26t+10=18解之得:t1=,t2=;综上所述P的坐标为(1,2)或(1,4)或(1,) 或(1,)