2023年高中数学公式全面汇总归纳大全.pdf

上传人:C****o 文档编号:92036021 上传时间:2023-05-30 格式:PDF 页数:18 大小:848.54KB
返回 下载 相关 举报
2023年高中数学公式全面汇总归纳大全.pdf_第1页
第1页 / 共18页
2023年高中数学公式全面汇总归纳大全.pdf_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023年高中数学公式全面汇总归纳大全.pdf》由会员分享,可在线阅读,更多相关《2023年高中数学公式全面汇总归纳大全.pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、龙正中学 05 级高中数学公式总结 一、函数 1、若集合 A 中有 n)(Nn个元素,则集合 A 的所有不同的子集个数为n2,所有非空真子集的个数是22 n。二次函数cbxaxy2的图象的对称轴方程是abx2,顶点坐标是abacab4422,。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即(一般式)cbxaxxf2)(,(零点式))()()(21xxxxaxf和nmxaxf2)()((顶点式)。二、三角函数 1、以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点),(yxP,点 P到原点的距离记为r,则 sin=ry,cos=rx,tg=x

2、y,ctg=yx,sec=xr,csc=yr。2、同角三角函数的关系中,平方关系是:1cossin22,22sec1 tg,22csc1 ctg;倒数关系是:1ctgtg,1cscsin,1seccos;相除关系是:cossintg,sincosctg。3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。4、函数BxAy)sin(),(其中00A的最大值是BA,最小值是AB,周期是2T,频率是2f,相位是x,初相是;其图象的对称轴是直线)(2Zkkx,凡是该图象与直线By 的交点都是该图象的对称中心。5、三角函数的单调区间:xysin的递增区间是2222kk,)(Zk,递减区间是23222k

3、k,)(Zk;xycos的递增区间是kk22,)(Zk,递减区间是kk22,)(Zk,tgxy 的递增区间是22kk,)(Zk 6、和角、差角公式:)sin(sincoscossin )cos(sinsincoscos )(tgtgtgtgtg1 7、二倍角公式是:sin2=cossin2 cos2=22sincos=1cos22=2sin21 tg2=212tgtg。8、半角公式是:sin2=2cos1cos2=2cos1 tg2=cos1cos1=sincos1=cos1sin。9、升幂公式是:2cos2cos122sin2cos12。10、降幂公式是:22cos1sin222cos1co

4、s2。11特殊角的三角函数值:0 6 4 3 2 23 sin 0 21 22 23 1 0 1 cos 1 23 22 21 0 1 0 tan 0 33 1 3 不存在 0 不存在 cot 不存在 3 1 33 0 不存在 0 13、正弦定理(其中 R 为三角形的外接圆半径):RCcBbAa2sinsinsin 14、余弦定理:第一形式,2b=Baccacos222 第二形式,cosB=acbca2222 15、ABC 的面积用 S 表示,外接圆半径用 R 表示,内切圆半径用 r 表示,半周长用 p 表示则:ahaS21;AbcSsin21;CBARSsinsinsin22;RabcS4;

5、)()(cpbpappS;prS 16、ABC 中:-tgC B)+tg(A,-cosC B)+cos(A,sinC=B)+sin(A 2cos2sinCBA,2sin2cosCBA,22CctgBAtg tgCtgBtgAtgCtgBtgA 三、不等式 1、两个正数的均值不等式是:abba2 2、两个正数ba、的调和平均数、几何平均数、算术平均数、均方根之间的关系是 2211222babaabba 3 双向绝对值不等式:bababa 左边:)0(0 ab时取得等号。右边:)0(0 ab时取得等号。四、数列 1、等差数列的通项公式是dnaan)1(1,前 n 项和公式是:2)(1nnaanS

6、=dnnna)1(211。2、等比数列的通项公式是11nnqaa,前 n 项和公式是:)1(1)1()1(11qqqaqnaSnn 3、当等比数列na的公比 q 满足q0,=0,0);扇形面积公式:rlS21;十一、比例的几个性质 1、比例基本性质:bcaddcba;反比定理:cdabdcba 更比定理:dbcadcba;合比定理;ddcbbadcba 分比定理:ddcbbadcba;合分比定理:dcdcbabadcba 合比定理:dcdcbabadcba 等比定理:若nnbabababa332211,0321nbbbb,则11321321babbbbaaaann。20XX 年新高考新增内容数

7、学概念总结 一、简易逻辑 1.可以判断真假的语句叫做命题.2.逻辑连接词有“或”、“且”和“非”.3.p、q 形式的复合命题的真值表:p q P 且 q P 或 q 真 真 真 真 真 假 假 真 假 真 假 真 假 假 假 假 4.命题的四种形式及其相互关系 互 逆 互 互 互 为 互 否 逆 逆 否 否 否 否 否 否 互 逆 原命题与逆否命题同真同假;逆命题与否命题同真同假.二、平面向量 运算性质:aaacbacbaabba00,坐标运算:设 2211,yxbyxa,则2121,yyxxba 设 A、B 两点的坐标分别为(x1,y1),(x2,y2),则1212,yyxxAB.3实数与向

8、量的积的运算律:babaaaaaa,设 yxa,,则 yxyxa,,4平面向量的数量积:定义:001800,0,0cosbababa,00a.运算律:bababaabba,,原命题 若 p 则 q 逆命题 若 q 则 p 否命题 若则q 逆否命题 若则 cbcacba 坐标运算:设 2211,yxbyxa ,则 2121yyxxba 5.重要定理、公式:(1)平面向量的基本定理 如果1e 和2e 是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 21,使2211eea(2)两个向量平行的充要条件 baba/)(R 设 2211,yxbyxa,则ba/01221 yxy

9、x(3)两个非零向量垂直的充要条件0baba 设 2211,yxbyxa,则 02121yyxxba(4)线段的定比分点坐标公式:设 P(x,y),P1(x1,y1),P2(x2,y2),且21PPPP,则112121yyyxxx。中点坐标公式222121yyyxxx(5)平移公式:如果点 P(x,y)按向量 kha,平移至 P(x,y),则.,kyyhxx 三、空间向量(1)向量加法与数乘向量的基本性质.)(,cbacbaabba,bkakbak(2)向量数量积的性质.001800,0,0cosbababa,2aaa,0baba(3)空间向量基本定理.给定空间一个基底cba,且对空间任一向量

10、p,存在唯一的有序实数组(x,y,z)使czbyaxp,(x,y,z)叫做向量p在基底cba,上的坐标.设 O、A、B、C 是不共面的四点,则对空间任一点 P,都存在唯一的有序实数组 x,y,z 使 OCzOByOAxOP(4)向量的直角坐标运算 设 321321,bbbbaaaa,则332211,babababa,332211,babababa,Raaaa321,332211babababa,232221aaaaaa 232221232221332211,cosbbbaaababababa Rbabababa,/332211,0332211babababa 设 A=111,zyx,B=222

11、,zyx,则OAOBAB222,zyx-111,zyx=121212,zzyyxx 212212212zzyyxxABABAB 四、概率 (1)若事件 A、B 为互斥事件,则 P(A+B)=P(A)+P(B)(2)若事件 A、B 为相互独立事件,则 P(AB)=P(A)P(B)(3)若事件 A、B 为对立事件,则 P(A)+P(B)=1。一般地,APAp 1(4)如果在一次试验中某事件发生的概率是 p,那么在 n 次独立重复试验中这个事恰好发生 K 次的概率 knkknnppCKP1 五、概率与统计 (1)离散型隋机变量的分布列的性质:;,2,1,0 ipi121pp.(2)若离散型惰机变量的

12、分布列为 X1 X2 xn p P1 P2 pn 则的数学期望 E=nnpxpxpx2211 期望的性质:设 a、b 为常数,则 E(a+b)=a E+b 若B(n,p),则 E=np 的方差为 D=(x1-E)2p1+(x2-E)2p2+(xn-E)2pn+方差的性质:设 a、b 为常数,则 D(a+b)=a2D 若B(n,p),则 D=np(1-p)(3)正态分布:正态总体函数 22221xexf,,x,其中表示总体平均值,表示标准差,其分布叫做正态分布,记作 N(,2),函数的图象叫正态曲线.在正态分布中,当,=0,=1 时,叫做标准正态分布,记作 N(0,1).标准正态分布表中,相应于

13、0 x的值0 x=P0 xx.正态总体 N(,2)取值小于 x 的概率 F(x)=x.若0 x0 的区间为增区间,使 xf 0 时开口向上 a 0 (一)椭圆周长计算公式 椭圆周长公式:L=2b+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2b)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。(二)椭圆面积计算公式 椭圆面积公式:S=ab 椭圆面积定理:椭圆的面积等于圆周率()乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、面积公式中虽然没有出现椭圆周率 T,但这两个公式都是通过椭圆周率 T 推导演变而来。常数为体,公式为用。椭圆形物体 体积计算公式椭

14、圆 的 长半径*短半径*PAI*高 三角函数:两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式 tan2A=2tanA/(1-tan2A)cot2A

15、=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 万能公式:sin=2tan(/2)/1+tan2(/2)cos=1-tan2(/2)/1+tan2(/2)tan=2tan(/2)

16、/1-tan2(/2)半角公式 sin(A/2)=(1-cosA)/2)sin(A/2)=-(1-cosA)/2)cos(A/2)=(1+cosA)/2)cos(A/2)=-(1+cosA)/2)tan(A/2)=(1-cosA)/(1+cosA)tan(A/2)=-(1-cosA)/(1+cosA)cot(A/2)=(1+cosA)/(1-cosA)cot(A/2)=-(1+cosA)/(1-cosA)和差化积 2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB

17、=cos(A+B)-cos(A-B)sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB-cotA+cotBsin(A+B)/sinAsinB 某些数列前 n 项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1)12+22+32+

18、42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=(n(n+1)/2)2 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角 乘法与因式分 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|a|+|b|a-b|a|+|b|a|b-bab|a

19、-b|a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac0 注:方程有两个不相等的个实根 b2-4ac0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h 圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2p

20、i*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r 0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中,S是直截面面积,L 是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 图形周长 面积 体积公式 长方形的周长=(长+宽)2 正方形的周长=边长4 长方形的面积=长宽 正方形的面积=边长边长 三角形的面积 已知三角形底 a,高 h,则 Sah/2 已知三角形三边 a,b,c,半周长 p,则 S p(p-a)(p-b)(p-c)(海伦公式)(

21、p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4 已知三角形两边 a,b,这两边夹角 C,则 SabsinC/2 设三角形三边分别为 a、b、c,内切圆半径为 r 则三角形面积=(a+b+c)r/2 设三角形三边分别为 a、b、c,外接圆半径为 r 则三角形面积=abc/4r 已知三角形三边 a、b、c,则 S 1/4c2a2-(c2+a2-b2)/2)2(“三斜求积”南宋秦九韶)|a b 1|S=1/2*|c d 1|e f 1|【|a b 1|c d 1|为三阶行列式,此三角形 ABC 在平面直角坐标系内 A(a,b),B(c,d),C(e,f),这里 ABC|e f 1

22、|选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)/3 其中 Ma,Mb,Mc 为三角形的中线长.平行四边形的面积=底高 梯形的面积=(上底+下底)高2 直径=半径2 半径=直径2 圆的周长=圆周率直径=圆周率半径2 圆的面积=圆周率半径半径 长方体的表面积=(长宽+长高宽高)2 长方体的体积=长宽高 正方体的表面积=棱长棱长6 正方体的体积=棱长棱长棱长 圆柱

23、的侧面积=底面圆的周长高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积高 圆锥的体积=底面积高3 长方体(正方体、圆柱体)的体积=底面积高 平面图形 名称 符号 周长 C 和面积 S 正方形 a边长 C4a Sa2 长方形 a 和 b边长 C2(a+b)Sab 三角形 a,b,c三边长 ha 边上的高 s周长的一半 A,B,C内角 其中 s(a+b+c)/2 S ah/2 ab/2?sinC s(s-a)(s-b)(s-c)1/2 a2sinBsinC/(2sinA)1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只

24、有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于 180 18 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不

25、相邻的两个内角的和 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas)有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss)有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的

26、平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于 60的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于 30那么它所对的直角边等于斜边的一半 38 直角三角

27、形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理 直角三角形两直角边 a、b 的平方和、

28、等于斜边 c 的平方,即 a2+b2=c2 47 勾股定理的逆定理 如果三角形的三边长 a、b、c 有关系 a2+b2=c2,那么这个三角形是直角三角形 48 定理 四边形的内角和等于 360 49 四边形的外角和等于 360 50 多边形内角和定理 n 边形的内角的和等于(n-2)180 51 推论 任意多边的外角和等于 360 52 平行四边形性质定理 1 平行四边形的对角相等 53 平行四边形性质定理 2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线互相平分 56 平行四边形判定定理 1 两组对角分别相等的四边形是平行

29、四边形 57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角 61 矩形性质定理 2 矩形的对角线相等 62 矩形判定定理 1 有三个角是直角的四边形是矩形 63 矩形判定定理 2 对角线相等的平行四边形是矩形 64 菱形性质定理 1 菱形的四条边都相等 65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66 菱形面积=对角线乘积的一半,即 s=(ab)2 67 菱形判定定理

30、1 四边都相等的四边形是菱形 68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形 69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等 70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71 定理 1 关于中心对称的两个图形是全等的 72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75 等腰梯形的两条对角线相等 76 等腰梯形判定定理 在同一底上

31、的两个角相等的梯形是等腰梯形 77 对角线相等的梯形是等腰梯形 78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)2 s=lh 83(1)比例的基本性质 如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么 a:b=c:d 84(2)合比性质 如果 a

32、b=cd,那么(ab)b=(cd)d 85(3)等比性质 如果 ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形

33、相似 91 相似三角形判定定理 1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理 3 三边对应成比例,两三角形相似(sss)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理 2 相似三角形周长的比等于相似比 98 性质定理 3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等

34、于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101 圆是定点的距离等于定长的点的集合 102 圆的内部可以看作是圆心的距离小于半径的点的集合 103 圆的外部可以看作是圆心的距离大于半径的点的集合 104 同圆或等圆的半径相等 105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107 到已知角的两边距离相等的点的轨迹,是这个角的平分线 108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相

35、等的一条直线 109 定理 不在同一直线上的三点确定一个圆。110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111 推论 1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112 推论 2 圆的两条平行弦所夹的弧相等 113 圆是以圆心为对称中心的中心对称图形 114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的

36、其余各组量都相等 116 定理 一条弧所对的圆周角等于它所对的圆心角的一半 117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118 推论 2 半圆(或直径)所对的圆周角是直角;90的圆周角所 对的弦是直径 119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121直线 l 和o 相交 dr 直线 l 和o 相切 d=r 直线 l 和o 相离 dr 122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123 切线的性质定理 圆的切

37、线垂直于经过切点的半径 124 推论 1 经过圆心且垂直于切线的直线必经过切点 125 推论 2 经过切点且垂直于切线的直线必经过圆心 126 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127 圆的外切四边形的两组对边的和相等 128 弦切角定理 弦切角等于它所夹的弧对的圆周角 129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132 切割线定理 从圆外一点引圆的切线和割线

38、,切线长是这点到割 线与圆交点的两条线段长的比例中项 133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134 如果两个圆相切,那么切点一定在连心线上 135两圆外离 dr+r 两圆外切 d=r+r 两圆相交 r-r dr+r(rr)两圆内切 d=r-r(rr)两圆内含 dr-r(rr)136 定理 相交两圆的连心线垂直平分两圆的公共弦 137 定理 把圆分成 n(n3):依次连结各分点所得的多边形是这个圆的内接正 n 边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138 定理 任何正多边形都有一个外接圆和一个内切圆

39、,这两个圆是同心圆 139 正 n 边形的每个内角都等于(n-2)180n 140 定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形 141 正 n 边形的面积 sn=pnrn2 p 表示正 n 边形的周长 142 正三角形面积3a4 a 表示边长 143 如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360,因此 k(n-2)180n=360化为(n-2)(k-2)=4 144 弧长计算公式:l=nr180 145 扇形面积公式:s 扇形=nr2360=lr2 146 内公切线长=d-(r-r)外公切线长=d-(r+r)147 等腰三角形的两个底脚相等 148 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 149 如果一个三角形的两个角相等,那么这两个角所对的边也相等 150 三条边都相等的三角形叫做等边三角形

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁