《半桥型开关稳压电源的设计与应用.doc》由会员分享,可在线阅读,更多相关《半桥型开关稳压电源的设计与应用.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 电力电子技术课程设计说明书 题 目 学 院: 电气与信息工程学院 学生姓名: 指导教师: 董恒 职称/学位 助教专 业: 自动化 班 级: 学 号: 完成时间: 2015.12.28 湖南工学院电力电子课程设计课题任务书学院: 电气与信息工程学院 专业:电气工程及其自动化专业自动化专业 指导教师董恒学生姓名课题名称半桥型开关稳压电源设计内容及任务一、设计任务设计一个半桥型开关稳压电源,已知输入电压单相:170260V,输入交流电频率4565HZ,输出直流电压24V恒定,输出直流电流10A,最大功率250W,稳压精度:小于直流输出电压整定值的1%。二、设计内容1、关于本课程学习情况简述;2、主
2、电路的设计、原理分析和器件的选择;3、控制电路的设计;4、保护电路的设计;5、利用MATLAB软件对自己的设计进行仿真。主要参考资料1 王兆安,王俊编.电力电子技术(第5版).北京:机械工业出版社,20122 黄俊,秦祖荫编.电力电子自关断器件及电路.北京:机械工业出版社,19913 李序葆,赵永健编.电力电子器件及其应用.北京:机械工业出版社,1996教研室意见 教研室主任:(签字)年 月 日半桥型开关稳压电源的设计与应用目录1、总体设计方案5laLY5。1.1输入整流滤波电路设计52DCvw。1.2逆变电路设计61zvzT。1.3驱动电路设计7P2ZEl。1.4 整体电路设计8Mk6OU。
3、1.5过流保护9x27Hr。1.6过压保护102、器件的选择11 2.1输入整流器件11 2.2输出整流器件11v3S8z。 2.3元件选择11OUpMa。 2.4保护电路器件选择133、MATLAB电路仿真14 3.1MATLAB简介14 3.2仿真电路图14pUJC6。致谢16参考文献17IQ9EK。摘要随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源是现代电力电子设备不可或缺的组成部分,其质量的优劣直接影响子设备性能,其体积的大小也直接影响到电子设备整体的体积。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又
4、笨又重的线性电源。这次介绍一种半桥电路的开关电源,是输入为单相交流170260V,输入频率4565HZ,输出直流电压24v,输出直流电流10A ,最大功率250w。重点介绍该电源的构思、理论、工作原理及特点。GBkp7。关键词:开关稳压电源;整流电路;半桥1、总体设计方案 开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。整个课题的设计,分为三部分。xdmax。1、主电路的设计,包括整流输入滤波、半桥式逆变电路、输出整流、输出滤波。2、开关管的驱动电路。3、控制电路的设计,包括控制逆变电路开关管工作的脉冲输出、软启动、调占空比以及保护电路。半桥型开
5、关稳压电源设计方案遵循开关电源的变换框图。如1.1图所示:半桥逆变电路输入滤波电路输出整流滤波输入整流电路 图1.1开关电源变换 先是由工频交流经桥式整流电路得到直流电流,再由半桥开开关逆变得到高频交流电,经整流滤波后得到所需直流电。可供电子设备使用。UvaKK。然后,电源流入输入整流滤波回路将交流电通过整流模块变换成含有脉动成分的直流电,然后通过输入滤波电容将脉动直流电变为较平滑的直流电。Ut7zR。其次,功率开关桥由控制电路提供触发脉冲把滤波得到的直流电变换为高频的方波电压,通过高频变压器传送到输出侧。uB9dK。最后,输出整流滤波回路将高频方波电压滤波成为所需的直流电压或电流。1.1输入
6、整流滤波电路设计整流滤波回路是开关电源的重要组成部分,它可以提高电压、电流的稳定度,减小干扰。按其所在的位置不同,分为输入和输出整流滤波回路。BvJ6d。这次研究的电源额定工作状态的技术要求为:输出电压24V,输出电流10A,输出功率约240w,为了减小电源的输入滤波电容等原因,用电源电路采用单相桥式整流。cDZ0f。 对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗!如果不加续流二极管,当突然增大至180或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使Ud成为正弦半波,即半周
7、期Ud为正弦,另外半周期为Ud为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。所以必须加续流二极管,以免发生失控现象。电路简图如下:k9xp9。图1 整流电路当负载中电感很大,且电路已工作于稳态。在U2正半周,触发角处给晶闸管D1加触发脉冲,U2经D1和D4向负载供电。U2过零变负时,因电感作用使电流连续,D1继续导通。但因a点电位低于b点电位,使得电流从D4转移至D2,D4关断,电流不再流经变压器二次绕组,而是由D1和D2续流。此阶段,忽略器件的通态压降,则Ud=0。v0Giy。1.2逆变电路设计半桥逆变电路原理如图,它有两个桥臂,每个桥臂由一个可控器件和一个反并联二
8、极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点便成为直流电源的中点。负载连接在直流电源中点和两个桥臂连接点之间。PHUV5。当可控器件不具有门极可关断能力的晶闸管时,必须附加强迫换流电路才能正常工作。半桥逆变电路的优点是简单,适用器件少。缺点是输出交流电压的幅值Um仅为Ud的二分之一,且直流侧需要两个电容串联,工作时还要控制两个电容器电压的均衡。因此半桥电路常用于几千瓦以下的小功率逆变电源。iow64。, 图2 逆变电路图开关器件V1和V2的栅极信号在一个周期内各有半周正偏,半周反偏,且二者互补。当负载为感性时,输出电压为矩形波。当V1或V2为通态时,负载电流和电压同方向,
9、直流侧向负载提供能量;而当VD1或VD2为通态时,负载电流和电压反向,负载电感中储存的能量向直流侧反馈,即负载电感将其吸收的无功能量返回直流侧。反馈回的能量暂时储存在直流侧电容器中,直流侧电容器起着缓冲这种无功能量的作用。VD1、VD2称为反馈二极管,又叫续流二极管。cZ1Zk。1.3驱动电路设计MOSFET的驱动可采用脉冲变压器,它具有体积小,价格低的优点,但直接驱动时,脉冲的前沿与后沿不够陡,影响MOSFET的开关速度。在此,采用了IR2304芯片,u2dyS。1) 芯片体积小(DIP8),集成度高(可同时驱动同一桥臂的上、下两只开关器件)。 2)动态响应快,通断延迟时间220220 ns
10、(典型值)、内部死区时间1000ns、匹配延迟时间50ns。 3)驱动能力强,可驱动600v主电路系统,具有61 mA130mA输出驱动能力,栅极驱动输入电压宽达1020V。 4)工作频率高,可支持100 kHz或以下的高频开关。 5)输入输出同相设计,提供高端和低端独立控制驱动输出,可通过两个兼容33v、5v和15v输入逻辑的独立CMOS或LSTFL输入来控制,为设计带来了很大的灵活性。YLT9f。 6)低功耗设计,坚固耐用且防噪效能高。IR2304采用高压集成电路技术,整合设计既降低成本和简化电路,又降低设计风险和节省电路板的空间,相比于其它分立式、脉冲变压器及光耦解决方案,IR2304更
11、能节省组件数量和空间,并提高可靠性。 7)具有电源欠压保护和关断逻辑,IR2304有两个非倒相输入及交叉传导保护功能,整合了专为驱动电机的半桥MOSFET或IGBT电路而设的保护功能。当电源电压降至47v以下时,欠压锁定(UVL0)功能会立即关掉两个输出,以防止直通电流及器件故障。当电源电压大于5v时则会释放输出(综合滞后一般为0.3v)。过压(HVIC)及防闭锁CMOS技术使IR2304非常坚固耐用。另外,IR2304还配备有大脉冲电流缓冲级,可将交叉传导减至最低;同时采用具有下拉功能的施密特(Sohmill)触发式输入设计,可有效隔绝噪音,以防止器件意外开通。LVs8U。如下图所示为IR2
12、304的连线图图3驱动电路图可以看出,IR2304具有连线简单,外围元器件少的优点。其中VCC由主电路中OUT自供电,LIN和HIN分别接UC3825的两个输出端,VD要采用快恢复二极管,C1为滤电容,C2为自举电容,最好采用性能好的钽电容,R1和R2为限流电阻。13Azg。1.4 整体电路设计为了提高系统的功率因数,整流环节不能采用二极管整流,采用了UC3854AB控制芯片组成功率因数校正电路。UC3854ABUnitrode公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进,其特点是采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真3。图2.6是由UC385
13、4AB控制的有源功率因数校正电路。H8Daf。图4整体电路图该电路由两部分组成。UC3854AB及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,Cs,S等元器件构成Boost升压电路。开关管S选择SKM75GBl23D模块,其工作频率选在35 kHz。升压电感L2为2mH20A。C5采用两个450V470F的电解电容并联。为了提高电路在功率较小时的效率,所设计的PFC电路在轻载时不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。此部分控制由图1中的比较器部分来实现。R10及R11是负载检测电阻。当负载较轻时,R10及R11上检测的信号输入给比较器,使其
14、输出端为低电平,D5导通,给ENA(使能端)低电平使UC3854AB封锁。在负载较大时ENA为高电平才让UC3854AB工作。D6接到SS(软启动端),在负载轻时D6导通,使SS为低电平;当负载增大要求UC3854AB工作时,SS端电位从零缓慢升高,控制输出脉冲占空比慢慢增大实现软启动。d2zFY。1.5过流保护当电力电子电路运行不正常或者发生故障时,可能会发生过电流。当器件击穿或短路、触发电路或控制电路发生故障、出现过载、直流侧短路、可逆传动系统产生环流或逆变失败,以及交流电源电压过高或过低、缺相等,均可引起过流。由于电力电子器件的电流过载能力相对较差,必须对变换器进行适当的过流保护。本文采
15、用快速熔断保险丝在输入端进行保护。WcT2Q。1.6过压保护 过压护要根据电路中过压产生的不同部位,加入不同的保护电路,当达到定电压值时,自动开通保护电路,使过压通过保护电路形成通路,消耗过压储存的电磁能量,从而使过压的能量不会加到主开关器件上,保护了电力电子器件。8IWRj。为了达到保护效果,可以使用阻容保护电路来实现。将电容并联在回路中,当电路中出现电压尖峰电压时,电容两端电压不能突变的特性,可以有效地抑制电路中的过压。与电容串联的电阻能消耗掉部分过压能量,同时抑制电路中的电感与电容产生振荡,58Her。2、器件的选择2.1输入整流器件输入为4565HZ交流电,电压为170260V ,下面
16、计算取电压为170V。1. 二极管的耐压: 整流二极管的峰值电压可用公式计算如下。 U=1701.414=240.38V 额定电压: 2. 二极管的额定电流:因为电源的输入功率随效率变化,所以应取电源效率最差时的值。在此,我们按一般开关电源的效率取值,取=0.8电源的输入功率可用(31)公式计算: A4ek8。Pin =p/min (21)kS5yY。 W (22) 流过每个二极管的有效值 (23)hoj7j。 额定电流: 2.2输出整流器件电感选择100 H;电容选择1000F /50V;二极管选择;二极管的峰值电压,u=24*=33.9v额定电压 : 额定电流 : 2.3元件选择1开关器件
17、选择。器件优点缺点GTR耐压高,电流大,开关特性好,通流能力强,饱和压降低开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题GTO电压、电流容量大,适用于大功率场合,具有电导调制效应,其通流能力很强电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低MOSFET开关速度快,输入阻抗高,热稳定性好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置IGBT开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小开关速度低于电
18、力MOSFET,电压,电流容量不及GTO表1几种功率器件的优缺点比较表在开关电源设计中用的功率器件种类有IGBT和MOSFET,但是考虑到工作在高频的IGBT成本较高,在本次设计选用MOSFET器件。主要参数选择,额定电流16A,额定电压500V,通态电阻0.4欧姆。GtVg5。在功率半导体器件中,MOSFET以高速、低开关损耗、低驱动损耗在各种功率变换,特别是高频功率变换中起着重要作用。在低压领域,MOSFET没有竞争对手,但随着MOS的耐压提高,导通电阻随之以2.4-2.6次方增长,其增长速度使MOSFET制造者和应用者不得不以数十倍的幅度降低额定电流,以折中额定电流、导通电阻和成本之间的
19、矛盾。即便如此,高压MOSFET在额定结温下的导通电阻产生的导通压降仍居高不下,耐压500V以上的MOSFET的额定结温、额定电流条件下的导通电压很高,耐压800V以上的导通电压高得惊人,导通损耗占MOSFET总损耗的2/3-4/5,使应用受到极大限制。 6S2qJ。2.4保护电路器件选择1.过压保护电路由3.1.1节可知输入电流为1.176A,即流过MOS管的电流为1.176A。查表可得保护电路的电容为:0.04 F 电阻为:500欧姆UG4mW。2.过流保护 =(1.21.5) (3-4)ux6Ow。则=/2=0.70560.7644A1)变压器变比 (35)设占空比为 0.5则0.5k=
20、24/170*1.2 K=0.235即变压器的变比为0.2352)变压器容量 =UI=14*10w=240W3、MATLAB电路仿真3.1MATLAB简介MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。本文采用matlab进
21、行仿真观测。gkmWE。3.2仿真电路图 图5 输入电压波形 图6仿真图 致谢 直流稳压电源是工农业设备、仪器仪表、实验室广泛应用的一种电源,研制高效率、稳定性好的稳压电源是人们一直追求的目标。近年来由于全控型、高频电力电子半导体器件和PWM 控制技术已发展到非常高水平, 从而实现开关稳压电源小型化、轻量化、高效率、高精度等优势, 并在很多方面取代传统的调整式直流稳压电源。高频开关稳压电源的变换电路形式有单端正激、单端反激、全桥和半桥等形式。这次设计的半桥型开关稳压电源采用性能稳定的常用PWM 芯片SG3525来进行反馈调整, 电路具有开关管承受的耐压低, 开关器件少, 驱动电路简单等优点。变
22、压器初级在整个周期中都流过电流, 磁芯利用得更充分,它克服了推挽式电路的缺点, 所使用的功率半导体器件耐压要求低、功率半导体器件饱和压降减少到最小、对输入滤波电容使用电压要求也较低。RbEdN。参考文献1 王兆安.电力电子技术.第五版.北京:机械工业出版社,20032 赵永健.电力电子器件及其应用.北京:机械工业出版社,19963 孟志强.晶闸管中频感应逆变电源的附加振荡启动方法,2003.64 陈国雄.电力电子变流技术.上海:上海交通大学出版社, 2003.15 钱照明.电力电子装置电磁兼容研究最新进展.电工技术学报,2007.76 陈桥梁.集成化是电力电子技术的发展趋势.交流技术与电力牵引,2006.1