《数学理第一轮第14章第70讲总体分布与特征数的估计.ppt》由会员分享,可在线阅读,更多相关《数学理第一轮第14章第70讲总体分布与特征数的估计.ppt(41页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第7070讲讲1.将一个容量为n的样本分成若干组,已知某组的频数和频率分别为60,0.25,则n=_.2.某地区在连续7天中,新增某种流感的数据分别为4,2,1,0,0,0,0,则这组数据的方差s2=_ 24023.已知一组数据为-1,0,4,x,6,15,且这组数据的平均数为5,那么这组数据的中位数为_.4.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为、s2,则新数据的平均数是_,方差是_.5s2 5.(2012广东肇庆期末卷)龙舟赛是肇庆人民喜爱的运动之一为了参加端午节龙舟赛,某龙舟队进行了6次测试,测得最大速度(km/h)的茎叶图如图所示:则6次测试的最大速度
2、的平均数等于 _(km/h),方差等于 _(结果用分数表示)33平均数与方差平均数与方差【例1】某工厂甲、乙两个车间包装产品,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录所抽查的数据如下:甲:90,75,110,115,85,115,110乙:101,98,102,103,99,98,99(1)这是哪一种抽样方法?(2)估计甲、乙两车间的产品的平均值与方差,并说明哪个车间包装的产品较稳定 由方差的大小可比较数据的稳定性【变式练习1】从某项综合能力测试中抽取100人的成绩统计如表,则这100人成绩的标准差为_分数54321人数2010303010茎叶图的应用茎叶图的应用【例2】
3、某赛季甲、乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员的得分:13,51,23,8,26,38,16,33,14,28,39;乙运动员的得分:49,24,12,31,50,31,44,36,15,37,25,36,39.(1)画出甲、乙两名运动员得分数据的茎叶图;(2)根据茎叶图分析甲、乙两名运动员的水平【解析】(1)茎叶图如下图 甲乙804631253682543893161679449150 茎叶图虽然不难,但往往被考生遗忘,会读图、作图就行【变式练习2】1961年扬基队外垒手马利斯打破了鲁斯的一个赛季打出60个全垒打的记录下面是扬基队的历年比赛中的鲁斯和马利斯每年击出的全垒打的比
4、较图试对他们的表现进行分析.鲁斯马利斯0813465223689766114 9445 061【解析】鲁斯的成绩相对集中,成绩稳定在46左右;马利斯的成绩相对发散,成绩稳定在26左右 频率分布直方图及频率分布直方图及其应用其应用【例3】一个社会调查机构就某地居民的月收入做调查,并根据所得数据画了样本的频率分布直方图(如图)已知最左边一组的频数是1000.请结合直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)收入落在哪个范围内的人数最少?并指出该小组的频数、频率;(3)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这些人中再用分层抽样方法抽出100人作进一步调查,则在250
5、0,3000)(元)月收入段应抽出多少人?(4)估计此地居民的月收入高于2500元的居民占总人数的百分比 注意条形图与频率分布直方图的区别本题涉及内容较多,又与实际问题相联系,所以认真读清题意非常重要【变式练习3】在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:分组频数频率1.30,1.34)41.34,1.38)251.38,1.42)301.42,1.46)291.46,1.50)101.50,1.54)2合计100(1)完成频率分布表,并画出频率分布直方图;(2)估计纤度落在1.38,1.50)中的概率及纤度小于1.40的概率;(3)统计方法中
6、,同一组数据常用该组区间的中点值(例如区间1.30,1.34)的中点值是1.32)作为代表据此,估计纤度的期望分组频数频率1.30,1.34)40.041.34,1.38)250.251.38,1.42)300.301.42,1.46)290.291.46,1.50)100.101.50,1.54)20.02合计1001.00【解析】(1)频率分布表补充完整如下:1.(2011南通二模卷)某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为_分22.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射
7、击了5次,成绩如下表(单位:环)如果甲、乙两人中只有1人入选,则入选的最佳人选应是_.甲108999乙1010799甲3.某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图如图所示,已知产品净重的范围是96,106,若样本中净重在96,100)的产品个数是24,则样本中净重在98,104)的产品个数是_.604.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为24171593,第二小组频数为12.(1)第二小组的频率是多少?样本容量n是多少?(2)若次数在1
8、10以上(含110次)为达标,试估计该校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳的次数的中位数落在哪个小组内?5.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.甲班乙班21819 9 1 0170 3 6 8 98 8 3 2162 5 88159(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率 1总体分布反映的是总体在各个范围内取值的比例情况,而这种分布一般是不知道的,所以用样本的分布估计总体分布,所以样本数据的代表性就很重要 2对于每个个体所取不同数值较少的总体,常用条形图表示其样本分布,而对于每个个体所取不同数值较多或无限的总体,常用频率分布直方图表示其样本分布 3描述数据的数字特征平均数、众数、中位数、方差,其中平均数、众数、中位数描述其集中趋势,方差反映各个数据与其平均数的离散程度