《二次函数应用题课件.ppt》由会员分享,可在线阅读,更多相关《二次函数应用题课件.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、同学们,今天就让我们一同学们,今天就让我们一起去体会生活中的数学给起去体会生活中的数学给我们带来的乐趣吧!我们带来的乐趣吧!某商品现在的售价为每件某商品现在的售价为每件60元,元,每星期可卖出每星期可卖出300件,市场调查反件,市场调查反映:每涨价映:每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每星期可多卖出元,每星期可多卖出18件,已知商品的进价为每件件,已知商品的进价为每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?请大家带着以下几个问题读题请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?)题目中有几种调整价格的方法?(2)题目涉及到哪
2、些变量?哪一个量是)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?自变量?哪些量随之发生了变化?某商品现在的售价为每件某商品现在的售价为每件60元,每星期元,每星期可卖出可卖出300件,市场调查反映:每涨价件,市场调查反映:每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每元,每星期可多卖出星期可多卖出18件,已知商品的进价为件,已知商品的进价为每件每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况若来看涨价的情况:若来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商元
3、,则每星期售出商品的利润品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。的函数关系式。涨价涨价x元时则每星期少卖元时则每星期少卖 件,实际卖出件,实际卖出 件件,销销额为额为 元,买进商品需付元,买进商品需付 元因因此,所得利润为此,所得利润为元元10 x(300-10 x)(60+x)(300-10 x)40(300-10 x)y=(60+x)(300-10 x)-40(300-10 x)即即(0X30)纯牛奶何时利润纯牛奶何时利润最大最大w某商场销售某种品牌的纯牛奶某商场销售某种品牌的纯牛奶,已知进价为每箱已知进价为每箱4040元元,生产厂家要求每箱售价在生
4、产厂家要求每箱售价在4040元元7070元之间元之间.市场调查发现市场调查发现:若每箱发若每箱发5050元销售元销售,平均每天可售出平均每天可售出9090箱箱,价格每降低价格每降低1 1元元,平均每天多销售平均每天多销售3 3箱箱;价格每升高价格每升高1 1元元,平均每天少销平均每天少销售售3 3箱箱.驶向胜利的彼岸w(1)(1)写出售价写出售价x(x(元元/箱箱)与每天所得利润与每天所得利润w(w(元元)之间的函数之间的函数关系式关系式;w(2)(2)每箱定价多少元时每箱定价多少元时,才能使平均每天的利润最大才能使平均每天的利润最大?最最大利润是多少大利润是多少?(1)列出二次函数的解析式,
5、并根)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的据自变量的实际意义,确定自变量的取值范围;取值范围;(2)在自变量的取值范围内,运用)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最公式法或通过配方求出二次函数的最大值或最小值。大值或最小值。一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9 m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4 m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m.问此球能否投中?此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?用抛物线的知识解决运动场上
6、或者生用抛物线的知识解决运动场上或者生活中的一些实际问题的一般步骤:活中的一些实际问题的一般步骤:建立直角坐标系建立直角坐标系二次函数二次函数 问题求解问题求解找出实际问题的答案找出实际问题的答案问题:问题:如图,隧道的截面由抛物线和长方形构成,长方如图,隧道的截面由抛物线和长方形构成,长方形的长是形的长是8m8m,宽是,宽是2m2m,抛物线可以用,抛物线可以用 表示表示.(1 1)一辆货运卡车高)一辆货运卡车高4m4m,宽,宽2m2m,它能通过该隧道,它能通过该隧道吗?(吗?(2 2)如果该隧道内设双行道,那么这辆货运卡车)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?是否可以通过?(
7、1)卡车可以通过)卡车可以通过.提示:当提示:当x=1时,时,y=3.75,3.7524.(2)卡车可以通过)卡车可以通过.提示:当提示:当x=2时,时,y=3,324.13131313O拱桥问题探究拱桥问题探究:练习练习:如图所示,公园要建造圆形喷水池,在水池中央垂直如图所示,公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子于水面处安装一个柱子OA,O恰在水面中心,恰在水面中心,OA1.25米,由柱子顶端米,由柱子顶端A处的喷头向外喷水,水流在各个方向沿处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,形状相同的抛物线落下,为使水流形状较为美观,为使水流形状较为美观,要求设计成
8、水流在离要求设计成水流在离OA距离为距离为1米处达到距水面米处达到距水面最大高度为最大高度为2.25米米,如果如果不计其他因素不计其他因素,那么水池那么水池的半径至少要多少米,的半径至少要多少米,才能使喷出的水流不致才能使喷出的水流不致落到池外?落到池外?AO水水 面面CByxAO水水 面面CByx解:以水面解:以水面OC所的直线为所的直线为 x 轴,柱子轴,柱子OA所在的直线为所在的直线为y轴,轴,O为为 原点建立直角坐标系,原点建立直角坐标系,设抛物线的解析式为:设抛物线的解析式为:y=a(x h)+k,则有则有 1.25=a(0 1)+2.2522 解得:解得:a=-1 所以,所以,y=
9、-(x 1)+2.252 则则A、B两点的坐标分别为两点的坐标分别为A(o,1.25)B(1,2.25),令令 y=0,则则-(x 1)+2.25=02解得:解得:x=2.5 或或 x=-0.5(舍去舍去)所以,水池半径至少需要所以,水池半径至少需要2.5米。米。思考题思考题:在上面的练习题中,若水池喷出抛物线形状不变,在上面的练习题中,若水池喷出抛物线形状不变,水池的半径为水池的半径为3.5米,要使水流不落到池外,此时水流米,要使水流不落到池外,此时水流最大高度应达多少米?(最大高度应达多少米?(精确到精确到0.10.1米米)AO水水 面面CByx解:依题意,解:依题意,A(0,1.25),
10、C(3.5,0)设设 y=-(x-h)+k,则有则有 -(0-h)+k=1.25 -(3.5-h)+K=0 解得解得 h=,k 3.7.所以,此所以,此时水流最大高度水流最大高度应达达3.7米米.222117解函数应用题的步骤解函数应用题的步骤:设未知数(确定自变量和函数);找等量关系,列出函数关系式;化简,整理成标准形式(一次函数、二次函数等);求自变量取值范围;利用函数知识,求解(通常是最值问题);写出结论。-202462-4xy若若3x3,该函数的最大值、最小值,该函数的最大值、最小值分别为分别为()、()、()。)。又若又若0 x3,该函数的最大值、最小,该函数的最大值、最小值分别为(值分别为()、()、()。)。求函数的最值问题,应注意什么求函数的最值问题,应注意什么?55 555 13图中所示的二次函数图像的图中所示的二次函数图像的解析式为:解析式为:在取值范围内的函数最值