《2022国家公务员考试行测之行程问题中的相遇问题61034.docx》由会员分享,可在线阅读,更多相关《2022国家公务员考试行测之行程问题中的相遇问题61034.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、国家公务员考试行测之行程问题中的相遇问题从历年的考试大纲和历年的考试分析来看,数学运算主要涉及到以下几个问题:行程问题,比例问题、不定方程、抽屉问题、倒推法问题、方阵问题和倍差问题、利润问题、年龄问题、牛吃草问题、浓度问题、平均数、数的拆分、数的整除性、速算与巧算,提取公因式法、统筹问题、尾数计算法、植树问题、最小公倍数和最大公约数问题等等。每一类问题的题型都有相应的解法,只有熟练掌握这些解法,才能提高我们的解题速度,节约时间,在考试中考出优异的成绩。下面专家就行程问题中的相遇问题做专项的讲解。行程问题的根底知识行程问题中的相遇问题和追及问题主要的变化是在人或事物的数量和运动方向上。我们可以简
2、单的理解成:相遇相离问题和追及问题当中参与者必须是两个人或事物以上;如果它们的运动方向相反,那么为相遇相离问题,如果他们的运动方向相同,那么为追及问题。相遇相离问题的根本数量关系:速度和相遇时间=相遇相离路程追及问题的根本数量关系:速度差追及时间=路程差在相遇相离问题和追及问题中,考生必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才恩能够提高解题速度和能力。相遇问题:知识要点:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么A,B两地的路程=甲的速度+乙的速度相遇时间=速度和相遇时间相遇问题的核心是“速度和问题。
3、例1、甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发分钟。A.30B.40C.50D.60解析:.【答案】C,此题涉及相遇问题。方法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,那么有,(60+40)x=60y+(x-30)+40(x-30),y=50方法2、甲提前走的路程=甲、乙共同走30分钟的路程,那么提前走的时间为,3060+40/60=50例2、甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。如果二人每小时各多行1千米,那么他们相遇的地
4、点距前次相遇点1千米。又知甲的速度比乙的速度快,乙原来的速度为A.3千米/时B.4千米/时C.5千米/时D.6千米/时解析:.【答案】B,原来两人速度和为606=10千米/时,现在两人相遇时间为6010+2=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,那么5X+1=6X+1,解得X=4。注意:在解决这种问题的时候一定要先判断谁的速度快。方法2、提速后5小时比原来的5小时多走了5千米,比原来的6小时多走了1千米,可知原来1小时刚好走了5-1=4千米。例3、某校下午2点整派车去某厂接劳模作报告,往返需1小时。该劳模在下午1点就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校
5、,于下午2点30分到达。问汽车的速度是劳模步行速度的倍。A.5B.6C.7D.8解析:【答案】A.方法1、方程法,车往返需1小时,实际只用了30分钟,说明车刚好在半路接到劳模,故有,车15分钟所走路程=劳模75分钟所走路程2点15-1点。设劳模步行速度为a,汽车速度是劳模的x倍,那么可列方程,75a=15ax,解得x=5。方法2、由于,车15分钟所走路程=劳模75分钟所走路程,根据路程一定时,速度和时间成反比。所以车速:劳模速度=75:15=5:1二次相遇问题:知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
6、那么有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。例4、甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米A.120B.100C.90D.80解析:【答案】A。方法1、方程法:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即542=x-54+42,得出x=120。方法2、乙第二次相遇所走路程是第一次的二倍,那么有542-42+54=120。总之,利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。内容总结1国家公务员考试行测之行程问题中的相遇问题从历年的考试大纲和历年的考试分析来看,数学运算主要涉及到以下几个问题:行程问题,比例问题、不定方程、抽屉问题、倒推法问题、方阵问题和倍差问题、利润问题、年龄问题、牛吃草问题、浓度问题、平均数、数的拆分、数的整除性、速算与巧算,提取公因式法、统筹问题、尾数计算法、植树问题、最小公倍数和最大公约数问题等等5