【人教版】精美获奖ppt课件 九下数学:26.1.2.2-反比例函数的图象和性质的的综合运用.ppt

上传人:飞****2 文档编号:91847482 上传时间:2023-05-28 格式:PPT 页数:155 大小:3.28MB
返回 下载 相关 举报
【人教版】精美获奖ppt课件 九下数学:26.1.2.2-反比例函数的图象和性质的的综合运用.ppt_第1页
第1页 / 共155页
【人教版】精美获奖ppt课件 九下数学:26.1.2.2-反比例函数的图象和性质的的综合运用.ppt_第2页
第2页 / 共155页
点击查看更多>>
资源描述

《【人教版】精美获奖ppt课件 九下数学:26.1.2.2-反比例函数的图象和性质的的综合运用.ppt》由会员分享,可在线阅读,更多相关《【人教版】精美获奖ppt课件 九下数学:26.1.2.2-反比例函数的图象和性质的的综合运用.ppt(155页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、26.1.2 反比例函数的图象和性质导入新课讲授新课当堂练习课堂小结第2课时 反比例函数的图象和性质的综合运用第二十六章 反比例函数学习目标1.理解反比例函数的系数 k 的几何意义,并将其灵活 运用于坐标系中图形的面积计算中.(重点、难点)2.能够解决反比例函数与一次函数的综合性问题.(重 点、难点)3.体会“数”与“形”的相互转化,学习数形结合的思想 方法,进一步提高对反比例函数相关知识的综合运 用能力.(重点、难点)导入新课导入新课 反比例函数的图象是什么?反比例函数的性质与 k 有怎样的关系?反比例函数的图象是双曲线 当 k 0 时,两条曲线分别位于第一、三象限,在每个象限内,y 随 x

2、 的增大而减小;当 k 0 时,两条曲线分别位于第二、四象限,在每个象限内,y 随 x 的增大而增大.复习引入问题1 问题2 用待定系数法求反比例函数的解析式一典例精析例1 已知反比例函数的图象经过点 A(2,6).(1)这个函数的图象位于哪些象限?y 随 x 的增大如 何变化?解:因为点 A(2,6)在第一象限,所以这个函数的 图象位于第一、三象限;在每一个象限内,y 随 x 的增大而减小.(2)点B(3,4),C(,),D(2,5)是否在这个 函数的图象上?解:设这个反比例函数的解析式为 ,因为点 A(2,6)在其图象上,所以有 ,解得 k=12.因为点 B,C 的坐标都满足该解析式,而点

3、 D的坐标不满足,所以点 B,C 在这个函数的图象上,点 D 不在这个函数的图象上.所以反比例函数的解析式为 .练一练已知反比例函数 的图象经过点 A(2,3)(1)求这个函数的表达式;解:反比例函数 的图象经过点 A(2,3),把点 A 的坐标代入表达式,得 ,解得 k=6.这个函数的表达式为 .(2)判断点 B(1,6),C(3,2)是否在这个函数的 图象上,并说明理由;解:分别把点 B,C 的坐标代入反比例函数的解析 式,因为点 B 的坐标不满足该解析式,点 C 的坐标满足该解析式,所以点 B 不在该函数的图象上,点 C 在该函 数的图象上(3)当 3 x 0,当 x 0 时,y 随 x

4、 的增大而减小,当 3 x 1 时,6 y 2.反比例函数图象和性质的综合二(1)图象的另一支位于哪个象限?常数 m 的取值范围 是什么?Oxy例2 如图,是反比例函数 图象的一支.根据图象,回答下列问题:解:因为这个反比例函数图象的一 支位于第一象限,所以另一支 必位于第三象限.由因为这个函数图象位于第一、三象限,所以m50,解得m5.(2)在这个函数图象的某一支上任取点 A(x1,y1)和 点B(x2,y2).如果x1x2,那么 y1 和 y2 有怎样的 大小关系?解:因为 m5 0,所以在这个函数图象的任一支 上,y 都随 x 的增大而减小,因此当x1x2时,y1y2.练一练 如图,是反

5、比例函数 的图象,则 k 的值可以是 ()A1 B3 C1 D0OxyB反比例函数解析式中 k 的几何意义三1.在反比例函数 的图象上分别取点P,Q 向 x 轴、y 轴作垂线,围成面积分别为S1,S2的矩形,填写下页表格:合作探究5123415xyOPS S1 1 S S2 2P(2,2)Q(4,1)S1的值S2的值 S1与S2的关系猜想 S1,S2 与 k的关系 4 4S1=S2S1=S2=k5432143232451QS1的值 S2的值S1与S2的关系猜想与 k 的关系P(1,4)Q(2,2)2.若在反比例函数 中也 用同样的方法分别取 P,Q 两点,填写表格:4 4S1=S2S1=S2=

6、kyxOPQS S1 1 S S2 2由前面的探究过程,可以猜想:若点P是 图象上的任意一点,作 PA 垂直于 x 轴,作 PB 垂直于 y 轴,矩形 AOBP 的面积与k的关系是S矩形 AOBP=|k|.yxOPS我们就 k 0 的情况给出证明:设点 P 的坐标为(a,b)AB点 P(a,b)在函数 的图象上,即 ab=k.S矩形 AOBP=PBPA=ab=ab=k;若点 P 在第二象限,则 a0,若点 P 在第四象限,则 a0,bSBSC B.SASBSCC.SA=SB=SC D.SASC0)图像上的任意两点,PA,CD 垂直于 x 轴.设 POA 的面积为 S1,则 S1=;梯形CEAD

7、 的面积为 S2,则 S1 与 S2 的大小关系是 S1 S2;POE 的面积 S3 和 S2 的大小关系是S2 S3.2S1S2S3 如图所示,直线与双曲线交于 A,B 两点,P 是AB 上的点,AOC 的面积 S1、BOD 的面积 S2、POE 的面积 S3 的大小关系为 .S1=S2 S3练一练解析:由反比例函数面积的不变性易知 S1=S2.PE 与双曲线的一支交于点 F,连接 OF,易知,SOFE=S1=S2,而 S3SOFE,所以 S1,S2,S3的大小关系为S1=S2 0b 0k1 0k2 0b 0合作探究xyOxyOk2 0b 0k1 0k2 0 xyOk1 0 xyO 例6 函

8、数 y=kxk 与 的图象大致是 ()D.xyOC.yA.yxB.xyODOOk0k0k0k0由一次函数增减性得k0由一次函数与y轴交点知k0,则k0 x提示:由于两个函数解析式都含有相同的系数 k,可对 k 的正负性进行分类讨论,得出符合题意的答案.在同一直角坐标系中,函数 与 y=ax+1(a0)的图象可能是 ()A.yxOB.yxOC.yxOD.yxOB练一练例7 如图是一次函数 y1=kx+b 和反比例函数 的图象,观察图象,当 y1y2 时,x 的取值范围为 .23yx0 2 x 3解析:y1y2 即一次函数图象处于反比例函数图象的上方时.观察右图,可知2 x 3.方法总结:对于一些

9、题目,借助函数图象比较大小更加简洁明了.练一练 如图,一次函数 y1=k1x+b(k10)的图象与反比例函数 的图象交于 A,B 两点,观察图象,当y1y2时,x 的取值范围是 12yx0A B 1 x 2例8 已知一个正比例函数与一个反比例函数的图象交于点 P(3,4).试求出它们的解析式,并画出图象.由于这两个函数的图象交于点 P (3,4),则点 P(3,4)是这两个函数图象上的点,即点 P 的坐标分别满足这两个解析式.解:设正比例函数、反比例函数的解析式分别为 y=k1x 和 .所以 ,.解得 ,.P则这两个函数的解析式分别为 和 ,它们的图象如图所示.这两个图象有何共同特点?你能求出

10、另外一个交点的坐标吗?说说你发现了什么?想一想:反比例函数 的图象与正比例函数 y=3x 的图象的交点坐标为 (2,6),(2,6)解析:联立两个函数解析式,解方程即可.练一练例9 已知 A(4,),B(1,2)是一次函数 y=kx+b与反比例函数 图象的两个交点,求一次函数解析式及 m 的值.解:把A(4,),B(1,2)代入 y=kx+b中,得 4k+b=,k+b=2,k=,解得 b=,所以一次函数的解析式为 y=x+.把 B(1,2)代入 中,得 m=12=2.当堂练习当堂练习A.4 B.2 C.2 D.不确定1.如图所示,P 是反比例函数 的图象上一点,过点 P 作 PB x 轴于点

11、B,点 A 在 y 轴上,ABP 的面积为 2,则 k 的值为 ()OBAPxyA2.反比例函数 的图象与一次函数 y=2x+1 的 图象的一个交点是(1,k),则反比例函数的解析 式是_ 3.如图,直线 y=k1x+b 与反比例函数 (x0)交于A,B两点,其横坐标分别为1和5,则不等式k1x+b 的解集是_1x5OBAxy154.已知反比例函数 的图象经过点 A(2,4).(1)求 k 的值;解:反比例函数 的图象经过点 A(2,4),把点 A 的坐标代入表达式,得 ,解得 k=8.(2)这个函数的图象分布在哪些象限?y 随 x 的增大 如何变化?解:这个函数的图象位于第二、四象限,在每一

12、个 象限内,y 随 x 的增大而增大.(3)画出该函数的图象;Oxy解:如图所示:(4)点 B(1,8),C(3,5)是否在该函数的图象上?因为点 B 的坐标满足该解析式,而点 C 的坐标不满足该解析式,所以点 B 在该函数的图象上,点 C 不在该函数的图象上.解:该反比例函数的解析式为 .xyOBA5.如图,直线 y=ax+b 与双曲线 交于两点 A(1,2),B(m,4)两点,(1)求直线与双曲线的解析式;所以一次函数的解析式为 y=4x2.把A,B两点坐标代入一次函数解析式中,得到a=4,b=2.解:把 B(1,2)代入双曲线解析式中,得 k=2,故其解析式为 .当y=4时,m=.(2)

13、求不等式 ax+b 的解集.xyOBA解:根据图象可知,若 ax+b ,则 x1或 x0.6.如图,反比例函数 与一次函数 y=x+2 的图象交于 A,B 两点.(1)求 A,B 两点的坐标;AyOBx解:y=x+2,解得 x=4,y=2 所以A(2,4),B(4,2).或 x=2,y=4.作ACx轴于C,BDx轴于D,则AC=4,BD=2.(2)求AOB的面积.解:一次函数与x轴的交点为M(2,0),OM=2.OAyBxMCDSOMB=OMBD2=222=2,SOMA=OMAC2=242=4,SAOB=SOMB+SOMA=2+4=6.课堂小结课堂小结面积问题面积不变性与一次函数的综合判断反比

14、例函数和一次函数在同一直角坐标系中的图象,要对系数进行分类讨论,并注意b 的正负反比例函数的图象是一个以原反比例函数的图象是一个以原点为对称中心的点为对称中心的中心对称图形,其与正比例函数的交点关于原点中心对称反比例函数图象和性质的综合运用第二十七章 相 似导入新课讲授新课当堂练习课堂小结27.2.1 相似三角形的判定第4课时 两角分别相等的两个三角形相似学习目标1.探索两角分别相等的两个三角形相似的判定定理.2.掌握利用两角来判定两个三角形相似的方法,并 能进行相关计算.(重点、难点)3.掌握判定两个直角三角形相似的方法,并能进行 相关计算.学校举办活动,需要三个内角分别为90,60,30的

15、形状相同、大小不同的三角纸板若干.小明手上的测量工具只有一个量角器,他该怎么做呢?导入新课导入新课情境引入?讲授新课讲授新课问题一 度量 AB,BC,AC,AB,BC,AC 的长,并计算出它们的比值.你有什么发现?CABABC两角分别相等的两个三角形相似一合作探究 与同伴合作,一人画 ABC,另一人画 ABC,使A=A,B=B,探究下列问题:这两个三角形是相似的证明:在 ABC 的边 AB(或 AB 的延长线)上,截取 AD=AB,过点 D 作 DE/BC,交 AC 于点 E,则有ADE ABC,ADE=B.B=B,ADE=B.又 AD=AB,A=A,ADE ABC,ABC ABC.CAABB

16、CDE问题二 试证明ABCABC.由此得到利用两组角判定两个三角形相似的定理:两角分别相等的两个三角形相似.A=A,B=B,ABC ABC.符号语言:CABABC归纳:如图,ABC中,DEBC,EFAB,求证:ADEEFC.AEFBCD证明:DEBC,EFAB,AEDC,AFEC.ADEEFC.练一练证明:在 ABC中,A=40 ,B=80 ,C=180 AB=60.在DEF中,E=80,F=60.B=E,C=F.ABC DEF.例1 如图,ABC 和 DEF 中,A=40,B=80,E=80,F=60 求证:ABC DEF.ACBFED典例精析例2 如图,弦 AB 和 CD 相交于 O 内一

17、点 P,求证:PA PB=PC PD.证明:连接AC,DB.A 和 D 都是弧 CB 所对的圆周角,A=_,同理 C=_,PAC PDB,_ 即PA PB=PC PD.DBODCBAP1.如图,在 ABC 和 ABC 中,若A=60,B =40,A=60,当C=时,ABC ABC.练一练CABBCA802.如图,O 的弦 AB,CD 相交于点 P,若 PA=3,PB=8,PC=4,则 PD=.6ODCBAP 解:EDAB,EDA=90 .又C=90,A=A,AED ABC.判定两个直角三角形相似二例2 如图,在 RtABC 中,C=90,AB=10,AC=8.E 是 AC 上一点,AE=5,E

18、DAB,垂足为D.求AD的长.DABCE 由此得到一个判定直角三角形相似的方法:有一个锐角相等的两个直角三角形相似.归纳:对于两个直角三角形,我们还可以用“HL”判定它们全等.那么,满足斜边和一直角边成比例的两个直角三角形相似吗?思考:如图,在 RtABC 和 RtABC 中,C=90,C=90,.求证:RtABC RtABC.CAABBC要证明两个三角形相似,即是需要证明什么呢?目标:证明:设_=k,则AB=kAB,AC=kAB.由 ,得 .Rt ABC Rt ABC.勾股定理 CAABBC由此得到另一个判定直角三角形相似的方法:斜边和一直角边成比例的两个直角三角形相似.归纳:例3 如图,已

19、知:ACB=ADC=90,AD=2,CD=,当 AB 的长为 时,ACB 与ADC相似CABD解析:ADC=90,AD=2,CD=,要使这两个直角三角形相似,有两种情况:(1)当 RtABC RtACD 时,有 AC:AD AB:AC,即 :2=AB:,解得 AB=3;CABD2(2)当 RtACB RtCDA 时,有 AC:CD AB:AC,即 :=AB:,解得 AB=当 AB 的长为 3 或 时,这两个直角三角形相似CABD2 在 RtABC 和 RtABC 中,C=C=90,依据下列各组条件判定这两个三角形是否相似.(1)A=35,B=55:;(2)AC=3,BC=4,AC=6,BC=8

20、:;(3)AB=10,AC=8,AB=25,BC=15:.练一练相似相似相似当堂练习当堂练习1.如图,已知 ABDE,AFC E,则图中相 似三角形共有 ()A.1对 B.2对 C.3对 D.4对C2.如图,ABC中,AE 交 BC 于点 D,C=E,AD:DE=3:5,AE=8,BD=4,则DC的长等于 ()A.B.C.D.ACABDEABDC3.如图,点 D 在 AB上,当 (或 =)时,ACDABC;ACD ACB B ADB4.如图,在 RtABC 中,ABC=90,BDAC 于D.若 AB=6,AD=2,则 AC=,BD=,BC=.18DBCA证明:ABC 的高AD、BE交于点F,F

21、EA=FDB=90,AFE=BFD(对顶角相等).FEA FDB,5.如图,ABC 的高 AD、BE 交于点 F 求证:DCABEF证明:BAC=1+DAC,DAE=3+DAC,1=3,BAC=DAE.C=1802DOC,E=1803AOE,DOC=AOE(对顶角相等),C=E.ABCADE.6.如图,1=2=3,求证:ABC ADEABCDE132O7.如图,BE是ABC的外接圆O的直径,CD是ABC 的高,求证:AC BC=BE CD.ODCBAE证明:连接CE,则A=E.又BE是ABC的外接圆O的直径,BCE=90=ADC,A=E,BCE=ADC,ACDEBC.AC BC=BE CD.两

22、角分别相等的两个三角形相似利用两角判定三角形相似课堂小结课堂小结直角三角形相似的判定导入新课讲授新课当堂练习课堂小结28.1 锐角三角函数第二十八章 锐角三角函数第4课时 用计算器求锐角三角函数值及锐角学习目标1.会使用科学计算器求锐角的三角函数值.(重点)2.会根据锐角的三角函数值,借助科学计算器求锐角 的大小.(重点)3.熟练运用计算器解决锐角三角函数中的问题.(难点)导入新课导入新课 复习引入 锐角a三角函数 30 45 60sin acos atan a1填写下表:通过前面的学习,我们知道当锐角 A 是 30、45、60等特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角 A 不是

23、这些特殊角,怎样得到它的锐角三角函数值呢?讲授新课讲授新课用计算器求锐角的三角函数值或角的度数一例1(1)用计算器求sin18的值;解:第一步:按计算器 键;sin第二步:输入角度值18;屏幕显示结果 sin18=0.309 016 994.不同计算器操作的步骤可能不同哦!典例精析(2)用计算器求 tan3036 的值;解:方法:第二步:输入角度值30.6 (因为3036=30.6);屏幕显示答案:0.591 398 351.第一步:按计算器 键;tan屏幕显示答案:0.591 398 351.方法:第一步:按计算器 键;tan第二步:输入角度值30,分值36(使用 键);D.MS(3)已知

24、sinA=0.501 8,用计算器求 A 的度数.第二步:然后输入函数值0.501 8;屏幕显示答案:30.119 158 67(按实际需要进行精确).解:第一步:按计算器 键;2nd F sin1还可以利用 键,进一步得到A=300708.97 (这说明锐角 A 精确到 1 的结果为 307,精确到 1 的结果为3079).2nd FD.MS练一练1.用计算器求下列各式的值(精确到0.0001):(1)sin47;(2)sin1230;(3)cos2518;(4)sin18cos55tan59.答案:(1)0.7314 (2)0.2164(3)0.9041(4)0.78172.已知下列锐角三

25、角函数值,用计算器求锐角 A,B的度数(结果精确到0.1):(1)sinA0.7,sinB0.01;(2)cosA0.15,cosB0.8;(3)tanA2.4,tanB0.5.答案:(1)A 44.4;B 0.6.(2)A 81.4;B 36.9.(3)A 67.4;B 26.6.利用计算器探索三角函数的性质二例2 通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:sin30_2sin15cos15;sin36_2sin18cos18;sin45_2sin22.5cos22.5;sin60_2sin30cos30;sin80_2sin40cos40.猜想:已知045,则sin2_

26、2sincos.=(2)如图,在ABC中,ABAC1,BAC2,请利用面积方法验证(1)中的结论证明:SABC=AB sin2 AC=sin2,SABC=2ABsin ACcos=sin cos,sin22sincos.sin20=,cos20=,sin220=,cos220=;sin35=,cos35=,sin235=,cos235=;猜想:已知090,则 sin2+cos2=.0.34200.57350.93970.11700.88300.8192 0.32900.6710练一练(1)利用计算器求值,并提出你的猜想:1(2)如图,在 RtABC 中,C=90,请验证你在(1)中的结论.证明

27、:在 RtABC中,a2+b2=c2,bABCac1.用计算器求sin243718的值,以下按键顺序正确 的是 ()A B C D A当堂练习当堂练习sin24D.MS37D.MS81D.MS=sin24D.MS37D.MS81D.MS=2nd Fsin24D.MS81D.MS=sin24D.MS37D.MS81D.MS=2nd F2.下列式子中,不成立的是 ()Asin35=cos55 Bsin30+sin45=sin75 C cos30=sin60 Dsin260+cos260=1B(1)sin40 (精确到0.0001);(2)sin1530 (精确到 0.0001);(3)若sin=0

28、.5225,则 (精确到 0.1);(4)若sin=0.8090,则 (精确到 0.1).0.64280.267231.53.利用计算器求值:54.0 4.已知:sin232+cos2=1,则锐角 =.58 5.用计算器比较大小:20sin87_ tan87.6.在 RtABC 中,C=90,BAC=4224,A 的平分线 AT=14.7cm,用计算器求 AC 的长 (精确到0.001).解:AT 平分BAC,且BAC=4224,CAT=BAC=2112.在 RtACT 中 cosCAT=,AC=AT cosCAT=14.7cos2112 13.705(cm).课堂小结课堂小结用计算器求锐角三

29、角函数值及锐角用计算器求锐角的三角函数值或角的度数注意:不同的计算器操作步骤可能有所不同利用计算器探索锐三角函数的新知第二十七章 相 似导入新课讲授新课当堂练习课堂小结27.2.1 相似三角形的判定第4课时 两角分别相等的两个三角形相似学习目标1.探索两角分别相等的两个三角形相似的判定定理.2.掌握利用两角来判定两个三角形相似的方法,并 能进行相关计算.(重点、难点)3.掌握判定两个直角三角形相似的方法,并能进行 相关计算.学校举办活动,需要三个内角分别为90,60,30的形状相同、大小不同的三角纸板若干.小明手上的测量工具只有一个量角器,他该怎么做呢?导入新课导入新课情境引入?讲授新课讲授新

30、课问题一 度量 AB,BC,AC,AB,BC,AC 的长,并计算出它们的比值.你有什么发现?CABABC两角分别相等的两个三角形相似一合作探究 与同伴合作,一人画 ABC,另一人画 ABC,使A=A,B=B,探究下列问题:这两个三角形是相似的证明:在 ABC 的边 AB(或 AB 的延长线)上,截取 AD=AB,过点 D 作 DE/BC,交 AC 于点 E,则有ADE ABC,ADE=B.B=B,ADE=B.又 AD=AB,A=A,ADE ABC,ABC ABC.CAABBCDE问题二 试证明ABCABC.由此得到利用两组角判定两个三角形相似的定理:两角分别相等的两个三角形相似.A=A,B=B

31、,ABC ABC.符号语言:CABABC归纳:如图,ABC中,DEBC,EFAB,求证:ADEEFC.AEFBCD证明:DEBC,EFAB,AEDC,AFEC.ADEEFC.练一练证明:在 ABC中,A=40 ,B=80 ,C=180 AB=60.在DEF中,E=80,F=60.B=E,C=F.ABC DEF.例1 如图,ABC 和 DEF 中,A=40,B=80,E=80,F=60 求证:ABC DEF.ACBFED典例精析例2 如图,弦 AB 和 CD 相交于 O 内一点 P,求证:PA PB=PC PD.证明:连接AC,DB.A 和 D 都是弧 CB 所对的圆周角,A=_,同理 C=_,

32、PAC PDB,_ 即PA PB=PC PD.DBODCBAP1.如图,在 ABC 和 ABC 中,若A=60,B =40,A=60,当C=时,ABC ABC.练一练CABBCA802.如图,O 的弦 AB,CD 相交于点 P,若 PA=3,PB=8,PC=4,则 PD=.6ODCBAP 解:EDAB,EDA=90 .又C=90,A=A,AED ABC.判定两个直角三角形相似二例2 如图,在 RtABC 中,C=90,AB=10,AC=8.E 是 AC 上一点,AE=5,EDAB,垂足为D.求AD的长.DABCE 由此得到一个判定直角三角形相似的方法:有一个锐角相等的两个直角三角形相似.归纳:

33、对于两个直角三角形,我们还可以用“HL”判定它们全等.那么,满足斜边和一直角边成比例的两个直角三角形相似吗?思考:如图,在 RtABC 和 RtABC 中,C=90,C=90,.求证:RtABC RtABC.CAABBC要证明两个三角形相似,即是需要证明什么呢?目标:证明:设_=k,则AB=kAB,AC=kAB.由 ,得 .Rt ABC Rt ABC.勾股定理 CAABBC由此得到另一个判定直角三角形相似的方法:斜边和一直角边成比例的两个直角三角形相似.归纳:例3 如图,已知:ACB=ADC=90,AD=2,CD=,当 AB 的长为 时,ACB 与ADC相似CABD解析:ADC=90,AD=2

34、,CD=,要使这两个直角三角形相似,有两种情况:(1)当 RtABC RtACD 时,有 AC:AD AB:AC,即 :2=AB:,解得 AB=3;CABD2(2)当 RtACB RtCDA 时,有 AC:CD AB:AC,即 :=AB:,解得 AB=当 AB 的长为 3 或 时,这两个直角三角形相似CABD2 在 RtABC 和 RtABC 中,C=C=90,依据下列各组条件判定这两个三角形是否相似.(1)A=35,B=55:;(2)AC=3,BC=4,AC=6,BC=8:;(3)AB=10,AC=8,AB=25,BC=15:.练一练相似相似相似当堂练习当堂练习1.如图,已知 ABDE,AF

35、C E,则图中相 似三角形共有 ()A.1对 B.2对 C.3对 D.4对C2.如图,ABC中,AE 交 BC 于点 D,C=E,AD:DE=3:5,AE=8,BD=4,则DC的长等于 ()A.B.C.D.ACABDEABDC3.如图,点 D 在 AB上,当 (或 =)时,ACDABC;ACD ACB B ADB4.如图,在 RtABC 中,ABC=90,BDAC 于D.若 AB=6,AD=2,则 AC=,BD=,BC=.18DBCA证明:ABC 的高AD、BE交于点F,FEA=FDB=90,AFE=BFD(对顶角相等).FEA FDB,5.如图,ABC 的高 AD、BE 交于点 F 求证:D

36、CABEF证明:BAC=1+DAC,DAE=3+DAC,1=3,BAC=DAE.C=1802DOC,E=1803AOE,DOC=AOE(对顶角相等),C=E.ABCADE.6.如图,1=2=3,求证:ABC ADEABCDE132O7.如图,BE是ABC的外接圆O的直径,CD是ABC 的高,求证:AC BC=BE CD.ODCBAE证明:连接CE,则A=E.又BE是ABC的外接圆O的直径,BCE=90=ADC,A=E,BCE=ADC,ACDEBC.AC BC=BE CD.两角分别相等的两个三角形相似利用两角判定三角形相似课堂小结课堂小结直角三角形相似的判定第二十七章 相 似导入新课讲授新课当堂

37、练习课堂小结27.2.1 相似三角形的判定第4课时 两角分别相等的两个三角形相似学习目标1.探索两角分别相等的两个三角形相似的判定定理.2.掌握利用两角来判定两个三角形相似的方法,并 能进行相关计算.(重点、难点)3.掌握判定两个直角三角形相似的方法,并能进行 相关计算.学校举办活动,需要三个内角分别为90,60,30的形状相同、大小不同的三角纸板若干.小明手上的测量工具只有一个量角器,他该怎么做呢?导入新课导入新课情境引入?讲授新课讲授新课问题一 度量 AB,BC,AC,AB,BC,AC 的长,并计算出它们的比值.你有什么发现?CABABC两角分别相等的两个三角形相似一合作探究 与同伴合作,

38、一人画 ABC,另一人画 ABC,使A=A,B=B,探究下列问题:这两个三角形是相似的证明:在 ABC 的边 AB(或 AB 的延长线)上,截取 AD=AB,过点 D 作 DE/BC,交 AC 于点 E,则有ADE ABC,ADE=B.B=B,ADE=B.又 AD=AB,A=A,ADE ABC,ABC ABC.CAABBCDE问题二 试证明ABCABC.由此得到利用两组角判定两个三角形相似的定理:两角分别相等的两个三角形相似.A=A,B=B,ABC ABC.符号语言:CABABC归纳:如图,ABC中,DEBC,EFAB,求证:ADEEFC.AEFBCD证明:DEBC,EFAB,AEDC,AFE

39、C.ADEEFC.练一练证明:在 ABC中,A=40 ,B=80 ,C=180 AB=60.在DEF中,E=80,F=60.B=E,C=F.ABC DEF.例1 如图,ABC 和 DEF 中,A=40,B=80,E=80,F=60 求证:ABC DEF.ACBFED典例精析例2 如图,弦 AB 和 CD 相交于 O 内一点 P,求证:PA PB=PC PD.证明:连接AC,DB.A 和 D 都是弧 CB 所对的圆周角,A=_,同理 C=_,PAC PDB,_ 即PA PB=PC PD.DBODCBAP1.如图,在 ABC 和 ABC 中,若A=60,B =40,A=60,当C=时,ABC AB

40、C.练一练CABBCA802.如图,O 的弦 AB,CD 相交于点 P,若 PA=3,PB=8,PC=4,则 PD=.6ODCBAP 解:EDAB,EDA=90 .又C=90,A=A,AED ABC.判定两个直角三角形相似二例2 如图,在 RtABC 中,C=90,AB=10,AC=8.E 是 AC 上一点,AE=5,EDAB,垂足为D.求AD的长.DABCE 由此得到一个判定直角三角形相似的方法:有一个锐角相等的两个直角三角形相似.归纳:对于两个直角三角形,我们还可以用“HL”判定它们全等.那么,满足斜边和一直角边成比例的两个直角三角形相似吗?思考:如图,在 RtABC 和 RtABC 中,

41、C=90,C=90,.求证:RtABC RtABC.CAABBC要证明两个三角形相似,即是需要证明什么呢?目标:证明:设_=k,则AB=kAB,AC=kAB.由 ,得 .Rt ABC Rt ABC.勾股定理 CAABBC由此得到另一个判定直角三角形相似的方法:斜边和一直角边成比例的两个直角三角形相似.归纳:例3 如图,已知:ACB=ADC=90,AD=2,CD=,当 AB 的长为 时,ACB 与ADC相似CABD解析:ADC=90,AD=2,CD=,要使这两个直角三角形相似,有两种情况:(1)当 RtABC RtACD 时,有 AC:AD AB:AC,即 :2=AB:,解得 AB=3;CABD

42、2(2)当 RtACB RtCDA 时,有 AC:CD AB:AC,即 :=AB:,解得 AB=当 AB 的长为 3 或 时,这两个直角三角形相似CABD2 在 RtABC 和 RtABC 中,C=C=90,依据下列各组条件判定这两个三角形是否相似.(1)A=35,B=55:;(2)AC=3,BC=4,AC=6,BC=8:;(3)AB=10,AC=8,AB=25,BC=15:.练一练相似相似相似当堂练习当堂练习1.如图,已知 ABDE,AFC E,则图中相 似三角形共有 ()A.1对 B.2对 C.3对 D.4对C2.如图,ABC中,AE 交 BC 于点 D,C=E,AD:DE=3:5,AE=

43、8,BD=4,则DC的长等于 ()A.B.C.D.ACABDEABDC3.如图,点 D 在 AB上,当 (或 =)时,ACDABC;ACD ACB B ADB4.如图,在 RtABC 中,ABC=90,BDAC 于D.若 AB=6,AD=2,则 AC=,BD=,BC=.18DBCA证明:ABC 的高AD、BE交于点F,FEA=FDB=90,AFE=BFD(对顶角相等).FEA FDB,5.如图,ABC 的高 AD、BE 交于点 F 求证:DCABEF证明:BAC=1+DAC,DAE=3+DAC,1=3,BAC=DAE.C=1802DOC,E=1803AOE,DOC=AOE(对顶角相等),C=E.ABCADE.6.如图,1=2=3,求证:ABC ADEABCDE132O7.如图,BE是ABC的外接圆O的直径,CD是ABC 的高,求证:AC BC=BE CD.ODCBAE证明:连接CE,则A=E.又BE是ABC的外接圆O的直径,BCE=90=ADC,A=E,BCE=ADC,ACDEBC.AC BC=BE CD.两角分别相等的两个三角形相似利用两角判定三角形相似课堂小结课堂小结直角三角形相似的判定

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁