《医学专题—细胞28045.docx》由会员分享,可在线阅读,更多相关《医学专题—细胞28045.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1. 蛋白质上主要由哪两类分选信号?.信号序列(signal sequence):是存在于蛋白质一级结构上的线性序列,通常15-60个氨基酸残基,有些信号序列在完成蛋白质的定向转移后被信号肽酶(signal peptidase)切除.信号斑(signal patch):存在于完成折叠的蛋白质中,构成信号斑的信号序列之间可以不相邻,折叠在一起构成蛋白质分选的信号。2. 细胞内蛋白质的分选运输途径主要有那些?.门控运输(gated transport):如核孔可以选择性的运输大分子物质和RNP复合体,并且允许小分子物质自由进出细胞核。.跨膜运输(transmembrane transport):蛋
2、白质通过跨膜通道进入目的地。如细胞质中合成的蛋白质在信号序列的引导下,通过线粒体上的转位因子,以解折叠的线性分子进入线粒体。.膜泡运输(vesicular transport):蛋白质被选择性地包装成运输小泡,定向转运到靶细胞器。如内质网向高尔基体的物质运输、高尔基体分泌形成溶酶体、细胞摄入某些营养物质或激素,都属于这种运输方式。.细胞质基质中的蛋白转运:与细胞骨架相关,但具体机制不清楚3. 哪些蛋白质需要在内质网上合成?向细胞外分泌的蛋白、如抗体、激素;膜蛋白,并且决定膜蛋白在膜中的排列方式;需要与其它细胞组合严格分开的酶,如溶酶体的各种水解酶;需要进行修饰的蛋白,如糖蛋白;4. 高尔基体具
3、有那三个功能区隔?高尔基体顺面的网络结构(cis Golgi network,CGN),是高尔基体的入口区域,接受由内质网合成的物质并分类后转入中间膜囊。高尔基体中间膜囊(medial Gdgi),多数糖基修饰,糖脂的形成以及与高尔基体有关的糖合成均发生此处。高尔基体反面的网络结构(trans Golgi network,TGN), 由反面一侧的囊泡和网管组成,是高尔基体的出口区域,功能是参与蛋白质的分类与包装,最后输出。5. 简述溶酶体的功能.细胞内消化:在高等动物细胞中,一些大分子物质通过内吞作用进入细胞,如内吞低密脂蛋白获得胆固醇;在单细胞真核生物中,溶酶体的消化作用就更为重要了。.细胞
4、凋亡:溶酶体可清除,凋亡细胞形成的凋亡小体.自体吞噬:清除细胞中无用的生物大分子,衰老的细胞器等。.防御作用:如巨噬细胞可吞入病原体,在溶酶体中将病原体杀死和降解。.参与分泌过程的调节,如将甲状腺球蛋白降解成有活性的甲状腺素。.形成精子的顶体。什么是细胞的化学通讯,有哪些类型?是间接的细胞通讯,指细胞分泌一些化学物质(如激素)至细胞外,作为信号分子作用于靶细胞,调节其功能。根据化学信号分子可以作用的距离范围,可分为以下4类:. 内分泌(endocrine):内分泌细胞分泌的激素随血液循环输至全身,作用于靶细胞。其特点是:低浓度,仅为10-8-10-12M;全身性,随血液流经全身,但只能与特定的
5、受体结合而发挥作用;长时效,激素产生后经过漫长的运送过程才起作用,而且血流中微量的激素就足以维持长久的作用。. 旁分泌(paracrine):细胞分泌的信号分子通过扩散作用于邻近的细胞。包括:各类细胞因子(如表皮生长因子);气体信号分子(如:NO). 突触信号发放:神经递质(如乙酰胆碱)由突触前膜释放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。自分泌(autocrine):与上述三类不同的是,信号发放细胞和靶细胞为同类或同一细胞,常见于癌变细胞。如:大肠癌细胞可自分泌产生胃泌素,介导调节c-myc、c-fos和ras p21等癌基因表达,从而促进癌细胞的增殖。简述磷脂酰肌醇信号途径中蛋白激
6、酶C的活化过程?在未受到刺激的细胞中,PKC以非活性形式分布于细胞质中,当细胞接受外界信号时,PIP2水解,质膜上DAG瞬间积累,由于细胞溶质中Ca2+浓度升高,导致细胞溶质中PKC转位到质膜内表面,被DAG活化,进而使不同类型的细胞中的不同底物蛋白的丝氨酸和苏氨酸残基磷酸化。简述cAMP信号途径中蛋白激酶A的活化过程? 蛋白激酶A(Protein Kinase A,PKA)由两个催化亚基和两个调节亚基组成,在没有cAMP时,以钝化复合体形式存在。cAMP与调节亚基结合,改变调节亚基构象,使调节亚基和催化亚基解离,释放出催化亚基。活化的蛋白激酶A催化亚基可使细胞内某些蛋白的丝氨酸或苏氨酸残基磷
7、酸化,于是改变这些蛋白的活性,进一步影响到相关基因的表达。细胞通过哪些途径使受体失活,对刺激产生适应?修饰或改变受体,如磷酸化,使受体与下游蛋白隔离,即受体失活(receptor inactivation)。暂时将受体移到细胞内部,即受体隐蔽(receptor sequestration)通过内吞作用,将受体转移到溶酶体中降解,即受体下行调节(receptor down-regulation)G蛋白耦联型受体有什么特点和作用?G蛋白耦联型受体为7次跨膜蛋白,受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内产生第二信使,从而将胞外信号跨
8、膜传递到胞内。G蛋白耦联型受体包括多种神经递质、肽类激素和趋化因子的受体,在味觉、视觉和嗅觉中接受外源理化因素的受体亦属G蛋白耦联型受体。什么是酶偶联型受体?酶偶联型受体(enzyme linked receptor)可分为两类:其一是本身具有激酶活性,如肽类生长因子(EGF等)的受体;其二是本身没有酶活性,但可以连接胞质酪氨酸激酶,如细胞因子受体超家族。这类受体的共同点是:通常为单次跨膜蛋白;接受配体后发生二聚化而激活,起动其下游信号转导。简述JAK-STAT信号途径配体与受体结合导致受体二聚化;二聚化受体激活JAK;JAK将STAT磷酸化;STAT形成二聚体,暴露出入核信号;STAT进入核
9、内,调节基因表达。简述RPTK-Ras信号通路配体RPTKadaptorGEFRasRaf(MAPKKK)MAPKKMAPK进入细胞核转录因子基因表达。简述NO的作用机理血管内皮细胞接受乙酰胆碱(Ach),引起胞内Ca2+浓度升高,激活胞内一氧化氮合酶,细胞释放NO,NO扩散进入平滑肌细胞,与胞质鸟苷酸环化酶(GTP-cyclase,GC)活性中心的Fe2结合,改变酶的构象,导致酶活性的增强和cGMP合成增多。cGMP可降低血管平滑肌中的Ca2+离子浓度。引起血管平滑肌的舒张,血管扩张、血流通畅。1、概述细胞核的基本结构与功能。答:细胞核包括核被膜、染色质、核仁和核骨架。核被膜是细胞核与细胞质
10、之间的界膜,由内膜、外膜以及二者之间的核间隙组成,其上还有的核孔是核质交换和信息交流的重要通道。染色质由DNA、组蛋白、非组蛋白及少量RNA组成,是遗传信息储存的主要场所。核仁含r DNA、RNA聚合酶、转录因子、r RNA 和RNP颗粒,主要完成r RNA转录加工和核糖体亚单位的组装。功能:是遗传信息的储存场所,在这里进行基因复制、转录和转录初产物的加工过程,从而参与细胞的遗传与代谢活动。2、试述核孔复合体的结构及其功能。答:(1)结构:核孔复合体由胞质环、核质环、辐和中央栓四部分组成。(2)功能:是核质交换的双功能、双向性亲水通道,主要进行核质间的物质交换和信息交流。双向性表现在既介导蛋白
11、质的入核转运,又介导RNA、核糖核蛋白颗粒的出核转运。双功能表现在它有两种运输方式:被动扩散与主动运输。在物质交换的过程中,通过信息物质的出核和入核转运并同细胞核内或细胞质内相关受体结合,实现核质间的信息交流。3、试述核小体的结构要点及其实验证据。结构要点:1)每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体及一个分子H1;2)组蛋白八聚体构成核小体的盘状核心结构;3)146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75圈, 组蛋白H1在核心颗粒外结合额外20bp DNA,锁住核小体DNA的进出端,起稳定核小体的作用。 包括组蛋白H1和166bp DNA的核小体结构又称染色质小
12、体;4)两个相邻核小体之间以连接DNA 相连,典型长度60bp,不同物种变化值为080bp;5)组蛋白与DNA之间的相互作用主要是结构性的,基本不依赖于核苷酸的特异序列,实验表明,核小体具有自组装(self-assemble)的性质;6)核小体沿DNA的定位受不同因素的影响,进而通过核小体相位改变影响基因表达。 主要实验证据: 1)铺展染色质的电镜观察:未经处理的染色质自然结构为30nm的纤丝,经盐溶液处理后解聚的染色质呈现10nm串珠状结构;2)用非特异性微球菌核酸酶消化染色质,部分酶解片段分析结果,基本是200bp 或其整数倍的片段;3)应用X射线衍射、中子散射和电镜三维重建技术研究,发现
13、核小体颗粒是直径为11nm、高6.0nm的扁园柱体,具有二分对称性(dyad symmetry),核心组蛋白的构成是先形成(H3)2(H4)2四聚体,然后再与两个H2AH2B异二聚体结合形成八聚体;4)SV40微小染色体(minichromosome)分析与电镜观察:预测含有5000 bp/200 bp=25个核小体,实际观察到23个核小体, 基本吻合。 4、染色质按功能分为几类?它们的特点是什么?答;染色质可分为活性染色质和非活性染色质。(1)活性染色质是有转录活性的染色质,呈疏松结构,利于转录因子和DNA结合,发生活跃的基因转录。主要特点如下:具有DNase I超敏感位点;很少与组蛋白H1
14、结合;组蛋白乙酰化程度高;核小体组蛋白H2B很少被磷酸化;其H2A少有变异形式;H3的变种只在活性染色质存在;HMG14和HMG17只存在于活性染色质中;组蛋白存在泛素化修饰。(2)非活性染色质是指没有转录活性的染色质。常高度凝缩,其中DNA和组蛋白结合紧密,其特点和活性染色质相反。5、分析中期染色体DNA的3种功能元件及其作用答:自主复制DNA序列(ARS):确保染色体在细胞周期中能够自我复制;着丝粒DNA序列:保证染色体平均分配到子细胞中;端粒DNA序列:DNA末端的高度重复序列,保持染色体的独立性和稳定性。包装功能基因在复制过程中不被切除,从而能够正常向下代传递。6、试述从DNA到染色体
15、的包装过程。DNA为什么要包装成染色质?答:包装模型有两种:多级螺旋模型和骨架-放射环结构模型。从染色质DNA分子包装成染色体要压缩近万倍,多级螺旋模型认为,从DNA到染色体要经过四级包装:(1)由DNA与组蛋白压缩7倍包装成核小体,在组蛋白H1的介导下核小体彼此连接成直径约10nm的串珠结构,这时染色质包装的一级结构(2)直径约10nm的核小体串珠结构螺旋盘绕,压缩6倍,形成每圈6个核小体,外径30nm,内径10nm,螺距11nm的螺线管,螺线管是染色质包装的二级结构(3)螺线管进一步螺旋化,压缩40倍,形成直径为0.4um的超螺线管,是三级结构(4)超螺线管进一步螺旋折叠,形成长2-10u
16、m的染色单体,为四级结构。DNA包装成染色质后,长度压缩了近万倍,更易在细胞核的狭小空间中存在,病例与顺利完成复制、转录和分离。染色质结构的形成使得真核生物基因结构更加复杂,调节机制更加多样,从而使真核生物更能适应环境。7.概述核仁的结构及其功能。答:核仁是真核细胞间期核中最明显的结构。它通常是单一的或者多个匀质的球形小体。没有被膜包裹,包括:纤维中心、致密纤维阻止和颗粒组分。核仁的主要功能涉及核糖体的生物发生,包括r RNA合成、加工和核糖体亚单位的装配。8.组蛋白与非组蛋白如何参与表观遗传的调控?答:表观遗传是指由非DNA序列变化引起的彪形变化,主要是由DNA化学修饰导致的。 组蛋白主要参
17、与核小体形成,形成染色质的高级结构,位于核小体上的DNA的转录活性受组蛋白和DNA间结合状态的影响。组蛋白通过甲基化、乙酰化和磷酸化而导致和DNA的结合改变,当二者之间的结合变紧密时,基因转录活性下降或不能转录,当变疏松时,基因转录活性增强或激活,从而影响表观遗传。 非组蛋白可以和DNA上的特异位点结合,引起DNA构象变化,导致DNA和其他非组蛋白以及组蛋白的结合发生变化。最终促使DNA解螺旋,DNA和组蛋白分离使染色质结构疏松,或引起基因的失活或激活,从而影响表观遗传。9.如何保证众多的细胞生命活动在巨小的细胞核内有序进行?答:形成相对独立的结构区域核被膜、染色质、核仁和核基质,由它们分别行
18、使不同的功能,这时保证细胞核内各项生命活动有序进行的重要保证。 由核被膜上的核孔复合体完成亲核蛋白和其他小分子物质的入核转运;进入的调控因子和染色质上的特异DNA序列结合,调控染色质上DNA的复制、转录;转录产物在核基质中完成加工修饰后与核中的转运蛋白结合,通过核孔出核转运。同时,核仁上完成r RNA的转录加工、RNP颗粒的组装和加工,加工修饰后核糖体亚单位也通过核孔出核转运到细胞核,与细胞质基质中的m RNA结合表达蛋白。 不同的生命活动分别在不同的结构区域中完成,而且各生命活动之间存在相互作用,这共同促使在巨小的核中生命活动的有序进行。1.N-连接的糖基化发生的部位及糖基供体分别是什么?发
19、生在糙面内质网,糖基供体是N-乙酰葡糖胺2、什么是第二信使?产生的机理是什么?第二信使的定义:第一信使分子(激素等)与细胞表面受体识别并结合后,在细胞内产生或释放早细胞内的小分子物质,如cAMP, cGMP, IP3, Ca2+, DAG等,有助于再胞内传递信号,诱发级联途径。产生的机理:cAMP-GPCR激活腺苷酸环化酶,催化ATP生成cAMP.cGMP-由鸟苷酸环化酶催化GTP生成cGMP.IP3与DAG-由G蛋白偶联受体激活质膜上的磷脂酶C的beta异构体(PLC),水解磷脂酸肌醇-4,5-二磷酸(PIP2)产生。Ca2+-IP3刺激细胞内质网膜上的钙离子通道,释放Ca2+进入细胞基质而
20、升高浓度。3、微管有哪些重要的功能?(1) 支持和维持细胞的形态; (2) 维持保持内膜性细胞器的空间定位分布; (3) 细胞内运输的导轨; (4) 与细胞运动有关; (5) 纺锤体与染色体运动; (6) 纤毛和鞭毛运动. 4、. 简述核小体的成份与组装方式。成份:五种碱性的组蛋白(H1,H2A, H2B, H3, H4)及200bp DNA片段。组装方式:1)每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体(各两分子的H2A, H2B, H3及H4)及一个分子H1;2)组蛋白八聚体构成核小体的盘状核心结构;3)146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75圈, 组蛋白H
21、1在核心颗粒外结合额外20bp DNA,锁住核小体DNA的进出端,起稳定核小体的作用。4)两个相邻核小体之间以连接DNA 相连,典型长度60bp,不同物种变化值为080bp;5)组蛋白与DNA之间的相互作用主要是结构性的,基本不依赖于核苷酸的特异序列,实验表明,核小体具有自组装(self-assemble)的性质;6)核小体沿DNA的定位受不同因素的影响,进而通过核小体相位改变影响基因表达。 1、微丝的化学组成及在细胞中的功能。答:微丝的化学组成:主要成分为肌动蛋白和肌球蛋白,肌球蛋白起控制微丝的形成、连接、盖帽、切断的作用,也可影响微丝的功能。其他成分为调节蛋白、连接蛋白、交联蛋白。微丝的功
22、能:(1)与微管共同组成细胞的骨架,维持细胞的形状。(2)具有非肌性运动功能,与细胞质运动、细胞的变形运动、胞吐作用、细胞器与分子运动、细胞分裂时的膜缢缩有关。(3)具有肌性收缩作用(4)与其他细胞器相连,关系密切。(5)参与细胞内信号传递和物质运输。2、什么是微管组织中心,它与微管有何关系。答:微管组织中心是指微管装配的发生处。它可以调节微管蛋白的聚合和解聚,使微管增长或缩短。而微管是由微管蛋白组成的一个结构。二者有很大的不同,但又有十分密切的关系。微管组织中心可以指挥微管的组装与去组装,它可以根据细胞的生理需要,调节微管的活动。如在细胞有丝分裂前期,根据染色体平均分配的需要,从微管组织中心
23、:中心粒和染色体着丝粒处进行微管的装配形成纺锤体,到分裂末期,纺锤体解聚成微管蛋白。所以说,微管组织中心是微管活动的指挥3、简述中间纤维的结构及功能。答:中间纤维的直径约712nm的中空管状结构,由4或8个亚丝组成。单独或成束存在于细胞中。中间纤维具有一个较稳定的310个氨基酸的螺旋组成的杆状中心区,杆状区两端为非螺旋的头部区(N端)和尾部区(C端)。头部区和尾部区由不同的氨基酸构成,为高度可变区域。功能:(1)支持和固定作用:支持细胞形态,固定细胞核。(2)物质运输和信息传递作用:在细胞质中与微管、微丝共同完成物质的运输,在细胞核内,与DNA的复制和转录有关。(3)细胞分裂时,对纺锤体和染色
24、体起空间支架作用,负责子细胞内细胞器的分配与定位。(4)在细胞癌变过程中起调控作用。1、细胞质基质中Ca2+浓度低的原因是什么?答案要点:细胞质基质中Ca2+浓度通常不到10-7mol/L,原因主要有以下几点:在正常情况下,细胞膜对Ca2+是高度不通透的;在质膜和内质网膜上有Ca2+泵,能将Ca2+从基质中泵出细胞外或泵进内质网腔中;某些细胞的质膜有Na+Ca2+交换泵,能将Na+输入到细胞内,而将Ca2+从基质中泵出;某些细胞的线粒体膜也能将钙离子从基质中转运到线粒体基质。2、简述细胞信号分子的类型及特点?答案要点:细胞信号分子包括:短肽、蛋白质、气体分子(NO、CO)以及氨基酸、核苷酸、脂
25、类的胆固醇衍生物等,其共同特点是:特异性,只能与特定的受体结合;高效性,几个分子即可发生明显的生物学效应,这一特性有赖于细胞的信号逐级放大系统;可被灭活,完成信息传递后可被降解或修饰而失去活性,保证信息传递的完整性和细胞免于疲劳。3、比较主动运输与被动运输的异同。答案要点:运输方向不同:主动运输逆浓度梯度或电化学梯度,被动运输:顺浓度梯度或电化学梯度;是否需要载体的参与:主动运输需要载体参与,被动运输方式中,简单扩散不需要载体参与,而协助扩散需要载体的参与;是否需要细胞直接提供能量:主动运输需要消耗能量,而被动运输不需要消耗能量;被动运输是减少细胞与周围环境的差别,而主动运输则是努力创造差别,
26、维持生命的活力。4、NO的产生及其细胞信使作用?答案要点:NO是可溶性的气体,NO的产生与血管内皮细胞和神经细胞相关,血管内皮细胞接受乙酰胆碱,引起细胞内Ca2+浓度升高,激活一氧化氮合成酶,该酶以精氨酸为底物,以NADPH为电子供体,生成NO和胍氨酸。细胞释放NO,通过扩散快速透过细胞膜进入平滑肌细胞内,与胞质鸟苷酸环化酶活性中心的Fe2+结合,改变酶的构象,导致酶活性的增强和cGMP合成增多。cGMP可降低血管平滑肌中的Ca2+离子浓度,引起血管平滑肌的舒张,血管扩张、血流通畅。NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关。5、钙离子的主要作用途径有哪几种?答案
27、要点:主要有:通过钙结合蛋白完成作用,如肌钙蛋白C、钙调素;通过钙调素活化腺苷酸环化酶及PDE调节cAMP水平;作为双信使系统的传递信号;参与其它离子的调节。6、G蛋白的类型有哪些?答案要点:G蛋白有两种类型一种是刺激型调节蛋白(Gs),另一种是抑制型调节蛋白(Gi)。二者结构和功能很相似,均由、和三个亚基组成,分子质量均为80100000D,它们的和亚基大小很相似,其亚基也都有两个结合位点:一是结合GTP或基其类似物的位点,具有GTP酶活性,能够水解GTP;另一个是含有负价键的修饰位点,可被细胞毒素ADP核糖基化。二者的不同之处在于Gs的S亚基能被霍乱毒素ADP核糖基化,而Gi的i亚基能被百
28、日咳毒素ADP核糖基化。Gs和Gi都调节其余相应受体的亲合性以及作用于腺苷酸环化酶,产生cAMP。7、简要说明由G蛋白偶联的受体介导的信号的特点。答案要点:G蛋白偶联的受体是细胞质膜上最多,也是最重要的倍转导系统,具有两个重要特点:信号转导系统由三部分构成:G蛋白偶联的受体,是细胞表面由单条多肽链经7次跨膜形成的受体;G蛋白能与GTP结合被活化,可进一步激活其效应底物;效应物:通常是腺苷酸环化酶,被激活后可提高细胞内环腺苷酸(cAMP)的浓度,可激活cAMP依赖的蛋白激酶,引发一系列生物学效应。产生第二信使。配体受体复合物结合后,通过与G蛋白的偶联,在细胞内产生第二信使,从而将胞外信号跨膜传递
29、到胞内,影响细胞的行为。根据产生的第二信使的不同,又可分为cAMP信号通路和磷酯酰肌醇信号通路。cAMP信号通路的主要效应是激活靶酶和开启基因表达,这是通过蛋白激酶完成的。该信号途径涉及的反应链可表示为:激素G蛋白偶联受体G蛋白腺苷酸环化化酶cAMP cAMP依赖的蛋白激酶A基因调控蛋白基因转录。磷酯酰肌醇信号通路的最大特点是胞外信号被膜受体接受后,同时产生两个胞内信使,分别启动两个信号传递途径即IP3Ca2+和DGPKC途径,实现细胞对外界信号的应答,因此,把这一信号系统又称为“双信使系统”。8、磷酯酰肌醇信号通路的传导途径。答案要点:外界信号分子识别并与膜上的与G蛋白偶联的受体结合活化G蛋
30、白激活磷脂酶C催化存在于细胞膜上的PIP2水解IP3和DG两个第二信使IP3可引起胞内Ca2+浓度升高,进而通过钙结合蛋白的作用引起细胞对胞外信号的应答;DG通过激活PKC,使胞内pH值升高,引起对胞外信号的应答。内容总结(1)1. 蛋白质上主要由哪两类分选信号(2)在物质交换的过程中,通过信息物质的出核和入核转运并同细胞核内或细胞质内相关受体结合,实现核质间的信息交流(3)非组蛋白可以和DNA上的特异位点结合,引起DNA构象变化,导致DNA和其他非组蛋白以及组蛋白的结合发生变化(4)进入的调控因子和染色质上的特异DNA序列结合,调控染色质上DNA的复制、转录(5)3、比较主动运输与被动运输的异同10