3.1立体几何中的向量方法一:平行和垂直(用)-PPT.ppt

上传人:教**** 文档编号:91833874 上传时间:2023-05-28 格式:PPT 页数:25 大小:1MB
返回 下载 相关 举报
3.1立体几何中的向量方法一:平行和垂直(用)-PPT.ppt_第1页
第1页 / 共25页
3.1立体几何中的向量方法一:平行和垂直(用)-PPT.ppt_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《3.1立体几何中的向量方法一:平行和垂直(用)-PPT.ppt》由会员分享,可在线阅读,更多相关《3.1立体几何中的向量方法一:平行和垂直(用)-PPT.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、3.1立体几何中的向量方法一:平行和垂直(用)lAP直线的方向向量直线的向量式方程 换句话说换句话说,直线上的非零向量直线上的非零向量叫做叫做直线的直线的方向向量方向向量一、方向向量与法向量22、平面的法向量、平面的法向量AlP平面平面 的向量式方程 换句话说换句话说,与平面垂直的与平面垂直的非零向量非零向量叫做平面叫做平面的的法法向量向量3oxyzABCO1A1B1C1例1.如图所示,正方体的棱长为1(1)直线OA的一个方向向量坐标为_(2)平面OABC 的一个法向量坐标为_(3)平面AB1C 的一个法向量坐标为_(-1,-1,1)(0,0,1)(1,0,0)456 练习练习 如图,在四棱锥

2、如图,在四棱锥P-ABCD中,底面中,底面ABCD是是正方形,侧棱正方形,侧棱PD 底面底面ABCD,PD=DC=1,E是是PC的中点,的中点,求平面求平面EDB的一个法向量的一个法向量.ABCDP PE E解:如图所示建立空间直角坐标系解:如图所示建立空间直角坐标系.XYZ设平面设平面EDB的法向量为的法向量为7大家有疑问的,可以询问和交流大家有疑问的,可以询问和交流可以互相讨论下,但要小声点可以互相讨论下,但要小声点可以互相讨论下,但要小声点可以互相讨论下,但要小声点8 因为方向向量与法向量可以确定因为方向向量与法向量可以确定直线和平面的位置,所以我们可以利直线和平面的位置,所以我们可以利

3、用直线的方向向量与平面的法向量表用直线的方向向量与平面的法向量表示空间直线、平面间的平行、垂直、示空间直线、平面间的平行、垂直、夹角、距离等位置关系夹角、距离等位置关系.用向量方法解决立体问题9二、立体几何中的向量方法二、立体几何中的向量方法证明平行与垂直证明平行与垂直10ml(一)(一).平行关系:平行关系:111213(二)、垂直关系:(二)、垂直关系:lm14lABC1516例例1.用向量方法证明用向量方法证明 定理定理 一个平面内的两条相交直线与另一个平面平行一个平面内的两条相交直线与另一个平面平行,则这两个平面平行则这两个平面平行已知已知 直线直线l与与m相交相交,17 例例2 四棱

4、锥四棱锥P-ABCD中,底面中,底面ABCD是正方是正方形形,PD 底面底面ABCD,PD=DC=6,E是是PB的的中点,中点,DF:FB=CG:GP=1:2.求证:求证:AE/FG.ABCDP PG GXYZF FE EA(6,0,0),F(2,2,0),E(3,3,3),G(0,4,2),AE/FG 证证 :如图所示:如图所示,建立建立空间直角坐标系空间直角坐标系./AEAE与与FGFG不共线不共线几何法呢?几何法呢?18 例例3 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正是正方形,方形,PD 底面底面ABCD,PD=DC,E是是PC的的中点,中点,(1)求证:求证:PA/平面平

5、面EDB.ABCDP PE EXYZG解解1 立体立体几何法几何法19ABCDP PE EXYZG解解2:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:连结证明:连结AC,AC交交BD于点于点G,连结连结EG20ABCDP PE EXYZ解解3:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1(1)证明:证明:设平面设平面EDB的法向量为的法向量为21ABCDP PE EXYZ解解4:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设D

6、C=1(1)证明:证明:解得解得 x,22A1xD1B1ADBCC1yzEF是是BB1,1,,CD中点,求证:中点,求证:D1F 例例4 4 正方体正方体中,中,E、F分别分别平面平面ADE.证明:设正方体棱长为证明:设正方体棱长为1,为单位为单位正交正交 基底,建立如图所示坐标系基底,建立如图所示坐标系D-xyz,所以所以23A1xD1B1ADBCC1yzEF是是BB1,1,,CD中点,求证:中点,求证:D1F 例例4 4 正方体正方体中,中,E、F分别分别平面平面ADE.证明证明2:24,E,E是是AA1 1中点,中点,例例5 5 正方体正方体平面平面C1 1BD.证明:证明:E求证:求证:平面平面EBD设正方体棱长为设正方体棱长为2,建立如图所示坐标系建立如图所示坐标系平面平面C1BD的一个法向量是的一个法向量是E(0,0,1)D(0,2,0)B(2,0,0)设平面设平面EBD的一个法向量是的一个法向量是平面平面C1 1BD.平面平面EBD25

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁