《中考数学压轴题精选(一)及答案优秀名师资料(完整版)资料.doc》由会员分享,可在线阅读,更多相关《中考数学压轴题精选(一)及答案优秀名师资料(完整版)资料.doc(174页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中考数学压轴题精选(一)及答案优秀名师资料(完整版)资料(可以直接使用,可编辑 优秀版资料,欢迎下载)2021中考数学压轴题精选(一)1、(2021北京)在平面直角坐标系xOy中,抛物线y= -x2+x+m2-3m+2 与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上。(1)求点B的坐标;(2)点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D,使得ED=PE,以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动) j 当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长; k 若P点从O点出发向A点作匀速
2、运动,速度为每秒1个单位,同时线段OA上另一 点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF 到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q 点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。xyO112、(2021北京)问题:已知ABC中,BAC=2ACB,点D是ABC内的一点,且AD=CD,BD=BA。探究DBC与ABC度数的比值。 请你完成下列探究过程:先将图形特殊化,得出猜想,再对
3、一般情况进行分析并加以证明。 (1) 当BAC=90时,依问题中的条件补全右图。观察图形,AB与AC的数量关系为 ; 当推出DAC=15时,可进一步推出DBC的度数为 ;可得到DBC与ABC度数的比值为 ; (2) 当BAC90时,请你画出图形,研究DBC与ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。ACB3、(2021郴州)如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2),与的面积大小关系如何?当时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得是以BC为斜边的直角三
4、角形,若存在,求出b;若不存在,说明理由. 第26题图(1)图(2)4、(2021滨州)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点(1)求A、B、C三点的坐标;(2)求过A、B、C三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位?5、(2021长沙)已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,b),其中且、为实数(1)求一次函数的表达式(用含b的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x
5、2,求| x1x2 |的范围6、(2021长沙)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动设运动时间为t秒(1)用t的式子表示OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当OPQ与PAB和QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比BAPxCQOy第26题图7、(
6、2021常德)如图9,已知抛物线轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)设E是线段AB上的动点,作EFAC交BC于F,连接CE,当的面积是面积的2倍时,求E点的坐标;(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.ABOC图9yx8、(2021常德)如图10,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AGCE.(1)当正方形GFED绕D旋转到如图11的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当正方
7、形GFED绕D旋转到如图12的位置时,延长CE交AG于H,交AD于M.求证:AGCH;当AD=4,DG=时,求CH的长。ABCDEF图10GAD图11FEBCGADBCEFHM图129、(2021丹东)如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,DMN为等边三角形(点M的位置改变时, DMN也随之整体移动) (1)如图,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由; (2)如图,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用
8、图证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由 图图图第25题图ABCDEF10、(2021丹东)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(8,0),点N的坐标为(6,4)(1)画出直角梯形OMNH绕点O旋转180的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式; (3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEF
9、G的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由; (4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由第26题图参考答案1、(2021北京)在平面直角坐标系xOy中,抛物线y= -x2+x+m2-3m+2 与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上。(1)求点B的坐标;(2)点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D,使得ED=PE,以PD为斜边在PD右侧作等腰直角三角形P
10、CD(当P点运动时,C点、D点也随之运动) j 当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长; k 若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一 点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF 到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q 点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。xyO11OABCDEPyx图1解:(1)拋物线y= -x
11、2+x+m2-3m+2经过原点,m2-3m+2=0,解得m1=1,m2=2,由题意知m1,m=2,拋物线的解析式为y= -x2+x,点B(2,n)在拋物线y= -x2+x上,n=4,B点的坐标为(2,4)。 (2)j 设直线OB的解析式为y=k1x,求得直线OB的解析式为 y=2x,A点是拋物线与x轴的一个交点,可求得A点的坐标为(10,0),设P点的坐标为(a,0),则E点的坐标为(a,2a),根据题意作等腰直角三角形PCD,如图1。可求得点C的坐标为(3a,2a),由C点在拋物线上,得2a= -(3a)2+3a,即a2-a=0,解得a1=,a2=0(舍去),OP=。 k 依题意作等腰直角三
12、角形QMN,设直线AB的解析式为y=k2x+b,由点A(10,0),点B(2,4),求得直线AB的解析式为y= -x+5,当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况: 第一种情况:CD与NQ在同一条直线上。如图2所示。可证DPQ为等腰直角三角形。此时OP、DP、AQ的长可依次表示为t、4t、2t个单位。PQ=DP=4t,t+4t+2t=10,t=。 第二种情况:PC与MN在同一条直线上。如图3所示。可证PQM为等腰直角三角形。此时OP、AQ的长可依次表示为t、2t个单位。OQ=10-2t,F点在直线AB上,FQ=t,MQ=2t,PQ=MQ=CQ=2t
13、,t+2t+2t=10,t=2。 第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示。此时OP、AQ的长可依次表示为t、2t个单位。t+2t=10,图4yxBOQ(P)NCDMEFt=。综上,符合题意的t值分别为,2, 。xyOAM(C)B(E)DPQFN图3ExOABCyPMQNFD图22、(2021北京)问题:已知ABC中,BAC=2ACB,点D是ABC内的一点,且AD=CD,BD=BA。探究DBC与ABC度数的比值。 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。 (1) 当BAC=90时,依问题中的条件补全右图。观察图形,AB与AC的数量
14、关系为 ; 当推出DAC=15时,可进一步推出DBC的度数为 ;可得到DBC与ABC度数的比值为 ; (2) 当BAC90时,请你画出图形,研究DBC与ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。ACB解:(1) 相等;15;1:3。(2) 猜想:DBC与ABC度数的比值与(1)中结论相同。 证明:如图2,作KCA=BAC,过B点作BK/AC交CK于点K, 连结DK。BAC90,四边形ABKC是等腰梯形, CK=AB,DC=DA,DCA=DAC,KCA=BAC,BACDK123456图2 KCD=3,KCDBAD,2=4,KD=BD, KD=BD=BA=KC。BK/AC,
15、ACB=6, KCA=2ACB,5=ACB,5=6,KC=KB, KD=BD=KB,KBD=60,ACB=6=60-1, BAC=2ACB=120-21, 1+(60-1)+(120-21)+2=180,2=21, DBC与ABC度数的比值为1:3。3、(2021郴州)如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2),与的面积大小关系如何?当时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由. 第26题图(1)图(2)解:(1)将
16、x=0,代入抛物线解析式,得点A的坐标为(0,4)(2)当b0时,直线为,由解得, 所以B、C的坐标分别为(2,2),(2,2) ,所以(利用同底等高说明面积相等亦可)当时,仍有成立. 理由如下由,解得, 所以B、C的坐标分别为(,+b),(,+b),作轴,轴,垂足分别为F、G,则,而和是同底的两个三角形,所以. (3)存在这样的b.因为所以,所以,即E为BC的中点所以当OE=CE时,为直角三角形,因为所以 ,而所以,解得,所以当b4或2时,OBC为直角三角形. 4、(2021滨州)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点(1)求A、B、C三
17、点的坐标;(2)求过A、B、C三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位?解:解:由抛物线的对称性可知AM=BM在RtAOD和RtBMC中,OD=MC,AD=BC,AODBMCOA=MB=MA设菱形的边长为2m,在RtAOD中,解得m=1DC=2,OA=1,OB=3A、B、C三点的坐标分别为(1,0)、(3,0)、(2,)设抛物线的解析式为y=(2)2+ 代入A点坐标可得=抛物线的解析式为y=(2)2+设抛物线的解析式为y=(一2)2+k,代入D(0,)可得k=5所以平移后的抛物线的解析式为y=(一2)2+5,平移了
18、5一=4个单位 5、(2021长沙)已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,b),其中且、为实数(1)求一次函数的表达式(用含b的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1x2 |的范围解:(1)一次函数过原点设一次函数的解析式为y=kx一次函数过(1,b) y=bx (2)y=ax2+bx2过(1,0)即a+b=2 由得 方程有两个不相等的实数根方程组有两组不同的解两函数有两个不同的交点 (3)两交点的横坐标x1、x2分别是方程的解 或由求根公式得出。 ab0,a+b=2 2a1令函数
19、在1a0,当x时,y随x的增大而增大。 (3)三角形的外心的性质:三角形外心到三顶点的距离相等. ( 04) 当时,S的取最小值经过不在同一直线上的三点,能且仅能作一个圆.又0m4,不存在m值,使S的取得最小值(4)当时,GB=GF,当时,BE=BG初三数学2021年二次函数中考大题总结1附答案详解一(解答题(共30小题) 21(2021遵义)如图,已知抛物线y=ax+bx+c(a?0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,,)( (1)求抛物线的函数解析式及点A的坐标; (2)在抛物线上求点P,使S=2S; ?POA?AOB(3)在抛物线上是否存在点Q,使?AQO与?AOB相
20、似,如果存在,请求出Q点的坐标;如果不存在,请说明理由( 2(2021资阳)抛物线的顶点在直线y=x+3上,过点F(,2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA?x轴于点A,NB?x轴于点B( (1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值; (2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB; (3)若射线NM交x轴于点P,且PAPB=,求点M的坐标( 23(2021珠海)如图,二次函数y=(x,2)+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点(已知一次函数y=kx+b的图象经过该二次函数图
21、象上点A(1,0)及点B( (1)求二次函数与一次函数的解析式; 2(2)根据图象,写出满足kx+b?(x,2)+m的x的取值范围( 24(2021株洲)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=,x+bx+c过A、B两点( (1)求这个抛物线的解析式; (2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N(求当t取何值时,MN有最大值,最大值是多少, (3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标( 5(2021重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理(某企业去年每月的
22、污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行(1至6月,该企业向污水厂输送的污水量y(吨)与月份x(1?x?6,且1x取整数)之间满足的函数关系如下表: 月份x(月) 1 2 3 4 5 6 12000 6000 4000 3000 2400 2000 输送的污水量y(吨) 1(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y,y12与x之间的函数关系式; (2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用; (3)今年以来,由于自建污水处理设备的全
23、面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a,30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助(若该企业每月的污水处理费用为18000元,请计算出a的整数值( (参考数据:?15.2,?20.5,?28.4) 26(2021肇庆)已知二次函数y=mx+nx+p图象的顶点横坐标是2,与x轴交于A(x,0)、B(x,0),x,0,121x,与y轴交于点C,O为坐标原点,tan?CAO,tan?CBO=1( 2(1)求证:n+4m=0; (2)求
24、m、n的值; (3)当p,0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值( 27(2021张家界)如图,抛物线y=,x+x+2与x轴交于C、A两点,与y轴交于点B,OB=4(点O关于直线AB的对称点为D,E为线段AB的中点( (1)分别求出点A、点B的坐标; (2)求直线AB的解析式; (3)若反比例函数y=的图象过点D,求k值; (4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设?POQ的面积为S,移动时间为t,问:S是否存在最大值,若存在,求出这个最大值,并求出此时的t值;若不存在,请说明理由( 8(2021
25、湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上(O为原点,点A的坐标为(6,0),点B的坐标为(0,8)(动点M从点O出发(沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动(当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t,0)( (1)当t=3秒时(直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式; (2)在此运动的过程中,?MNA的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由; (3)当t为何值时,?MNA是一个等腰三角形, 29(2021云南)如图
26、,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A(抛物线y=x+bx+c的图象过点E(,1,0),并与直线相交于A、B两点( (1)求抛物线的解析式(关系式); (2)过点A作AC?AB交x轴于点C,求点C的坐标; (3)除点C外,在坐标轴上是否存在点M,使得?MAB是直角三角形,若存在,请求出点M的坐标;若不存在,请说明理由( 10(2021岳阳)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图?所示,如果把锅纵断面的抛物线的
27、记为C,把锅盖纵断面的抛物线记为C( 12(1)求C和C的解析式; 12(2)如图?,过点B作直线BE:y=x,1交C于点E(,2,,),连接OE、BC,在x轴上求一点P,使以点1P、B、C为顶点的?PBC与?BOE相似,求出P点的坐标; (3)如果(2)中的直线BE保持不变,抛物线C或C上是否存在一点Q,使得?EBQ的面积最大,若存在,求12出Q的坐标和?EBQ面积的最大值;若不存在,请说明理由( 211(2021益阳)已知:如图,抛物线y=a(x,1)+c与x轴交于点A(,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P(1,3)处( (1)求原抛物线的解析式; (2)学校举行班徽设计比
28、赛,九年级5班的小明在解答此题时顿生灵感:过点P作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比(约等于0.618)(请你计算这个“W”图案的高与宽的比到底是多少,(参考数据:,结果可保留根号) 12(2021义乌市)如图1,已知直线y=kx与抛物线y=交于点A(3,6)( (1)求直线y=kx的解析式和线段OA的长度; (2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N(试探究:线段QM与线段QN的长度之比是否为定值,如果是,求出这个定值;如果不是,说明理由; (3)如图2,若点B为抛物线上对称轴右侧的点,点