《呼吸机模式及参数(完整版)资料.doc》由会员分享,可在线阅读,更多相关《呼吸机模式及参数(完整版)资料.doc(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、呼吸机模式及参数(完整版)资料(可以直接使用,可编辑 优秀版资料,欢迎下载)呼吸机参数设置一、呼吸机的作用及适应症:1.作用:替代和改善外呼吸,降低呼吸(Respiratory)做功。(主要是改善通气功能,对改善换气功能能力有限)2.适应症:呼吸功能不全、呼吸衰竭;呼吸肌肉和神经等不可逆损害的替代治疗;危重病人的呼吸支持;术中及术后病人等。二、呼吸机的组成、驱动、原理:1.组成部分:(1)主机(ventilator):正压呼吸控制器、通气模式控制器、持续气流控制器、空氧混合器、压力感受器、流量感受器、呼气末正压发生器、触发装置、阀门系统、报警及监测装置等(由微电脑及电路等控制)。(2)空气压缩
2、机(compressor):中心供空气时不需要工作。(3)外部管道系统:吸气管道(inspiratory tube)、气体加温湿化装置(humidifier)、呼气管道(expiratory tube)、集水杯。2.驱动调节方式:(1)电动电控:不需空气压缩机,驱动调节均由电源控制。(2)气动气控:需空、氧气源,逻辑元件调节参数。(3)气动电控:多数现代呼吸机的驱动调节方式。3.工作原理:(1)切换方式:吸气向呼气转换的方式。分为:时间、流速、压力、容量切换(2)限制方式:吸气时气体运送的方式(吸气气流由什么来管理)。分为:流速、压力、容量限制(多数靠设置流速或压力)。(3)触发方式:呼气向吸
3、气转换的方式。分为:机器控制(时间触发)和病人触发(流量触发和压力触发)。三、呼吸机的调试与监测:1.呼吸机的检测:依呼吸机类型而定2.控制部分:(1)模式选择:依据病情需要(2)参数调节:潮气量(Tidal Volume):815ml/kg ;定容:VT=FlowTi(三者设定两者); 定压:C=V/P(根据监测到的潮气量来设置吸气压力Inspirator Pressure)吸气时间:Ti=60/RR,一般吸呼比(I:E)为1:1.52;吸气停顿时间:属吸气时间,一般设置呼吸周期的10%秒(应20%) 吸气流速:Peak Flow键;流速波形:递增、正弦波、方波、递减通气频率(RR):接近生
4、理频率氧浓度(FiO2,21%100%):只要PaO2/FiO2满意,FiO2应尽量低, FiO2高于60%为高浓度氧触发灵敏度:压力触发水平一般在基础压力下0.51.5cmH2O;流速触发水平一般在基础气流下13L/min呼气灵敏度(Esens):一般设置2025%呼气末正压(PEEP):生理水平为35 cmH2O压力支持水平(Pressure Support):初始水平1015 cmH2O压力支持水平(Pressure Support):初始水平1015 cmH2O吸气上升时间百分比(Insp RiseTime%)、压力上升梯度、压力斜坡(Pressure Scope)、流速加速百分比(2
5、)其它特殊功能键:吸气暂停键(InspPause):吸气末阻断法测定气道平台压呼气暂停键(Exp Pause):呼气末阻断法测定auto PEEP手动呼吸键(Manual Breath、Manual Insp、Start Breath)氧雾化键(Nebulization)100% O2键叹气功能键(Sigh)3.报警设置(1)分钟通气量(minute ventilation,MV,VE)上(下)限:高(低)于设定或目标分钟通气量1015%(2)呼气潮气量上(下)限:高(低)于设定或目标潮气量1015% (3)气道压(airway pressure)上(下)限:高(低)于平均气道压510 cmH
6、2O(4)基线压(baseline pressure)上(下)限:PEEP值上(下)3 cmH2O(5)通气频率上(下)限:机控时设定值上(下)5bpm,撤机时视情况而定。(6)FiO2:设定值上下510%4.呼吸机的监测系统(有些呼吸机有监测显示屏)(1)数据监测:(2)呼吸力学曲线监测:三条动态曲线:压力-时间(P-T)、容量-时间(V-T)、流速-时间(F-T)两个环:压力-容量环(P-V)、流速-容量环(F-V)四、通气模式及方式简介:1.常见通气模式简介:(1)按压力或容量是否恒定分为:定压(如PC)、定容(如VC)(2)按是否需要病人的触发分为: CMV(又称IPPV)、A/C(3
7、)按病人和呼吸机承担呼吸功的多少分为:完全通气支持:如CMV、 A/C、近正常呼吸频率的SIMV部分通气支持:如PSV、低频率的SIMV或+PSV、MMV、VSV、PAV、APRV、(BiPAP,有两种类型)、CPAP (4)按指令方式分为:CMV、IMV、SIMV、MMV(5)伺服-控制通气模式:Servo300A的PRVC、VSV、自动转换(automode);Bear1000的PA(又称VAPSV);伽利略的ASV、APV(6)撤机方法:T型管试验、SIMV/ IMV、PSV、SIMV+PSV、各种伺服-控制通气模式。2.特殊通气方式简介:(1)分隔肺通气(independent lun
8、g ventilation,ILV):两侧肺分别进行独立通气或一侧肺进行选择性通气,可用于气道隔离、双侧肺病变严重不对称、双侧急性肺损伤。(2)反比通气(inverse tatio ventilation,IRV):可在较低气道峰压下改善气体交换,常用于ARDS。(3)液体通气(liquid ventilation,LV):分全(total)液体通气(TLV)和部分(partial) 液体通气(PLV),液体用全氟化碳(perfluorocarbon,PFC)作为 O2和C O2的载体,有望成为治疗ARDS的有效方法。(4)负压通气(negative pressure ventilation,
9、NPV):将负压周期性作用于体表,使肺内压降低而产生通气,主要适应症为慢性进行性神经肌肉疾病。(5)高频通气(high frequency ventilation,HFV):一种高频率(正常呼吸频率4倍以上)低潮气量(解剖死腔)的通气方式,降低肺损伤。分为高频正压通气(HFPPV),60100bpm;高频喷射(jet)通气(HFJV),100200bpm;高频振荡(oscillation)通气(HFOV),200900bpm。(6)无创性通气(noninvasive ventilation):如无创间隙正压通气(NIPPV);美国伟康公司的BiPAP呼吸机(模式有S、T、S/T、PC、CPAP
10、)(7)气管内吹气(tracheal gas insufflation,TGI):经气管插管放置细导管,减少死腔通气,增加肺泡通气,以便在呼气相冲淡解剖死腔中的CO2。3.通气模式英文全称:(1)CMV:持续控制通气,continuous mandatory ventilation(2)IPPV:间隙正压通气,intermittent positive preassure ventilation(3)A/CV:辅助/控制通气,assist-control ventilation(4)PC:压力控制,preassure control(5)VC:容量控制,volume control(6)IMV
11、:间隙指令通气,intermittent mandatory ventilation(7)SIMV:同步间隙指令通气,synchronized intermittent mandatory ventilation(8)PSV:压力支持通气,preassure support ventilation(9)VSV:容量支持通气,volume support ventilation(10)MMV:指令每分通气,mandatory minute ventilation(11)PRVC:压力调节容量控制,preassure regulated volume control(12)PAV:成比例辅助通气,
12、proportional assist ventilation(13)APRV:气道压力释放通气,airway preassure release ventilation(14)VAPSV:容量保障压力支持通气,volume assured preassure support ventilation(15)PA:压力扩增,preassure augmentation(16)ASV:适应性支持通气,adaptive support ventilation(17)APV:适应性压力通气,adaptive preassure ventilation(18)BiPAP:双水平或双相气道正压,bilev
13、el or biphasic positive airway preassure(19)PEEP:呼气末正压,positive end-expiratory preassure(20)CPAP:持续气道正压,continuous positive airway preassure五、其它几种呼吸治疗措施简介:1.特殊气体吸入:(1)氦-氧混合气(Heliox):促进氧弥散及二氧化碳的排除,降低气道压和呼吸功耗。浓度:氦60%79%,氧40%21%。(2)一氧化氮(NO):传递信息和调节血管张力,选择性肺血管扩张剂。2.肺外气体交换:(1)体外膜肺氧合(extracorporeal membra
14、ne oxygenation,ECMO):利用氧和膜进行血液和气体交换,使肺处于相对休息状态。(2)血管内氧合器(intravascular oxygenator,IVOX):利用气体压力梯度差进行交换,全称为血管内氧合和二氧化碳排除装置(intravascular oxygenation and carbon dioxide transfer device)。3.膈肌起搏:传递电流到膈神经使膈肌收缩(1)体内膈肌起搏:(implanted diaphragm pacing,IDP)(2)体外膈肌起搏:(external diaphragm pacing,EDP)六、相关公式简介:1.肺泡氧分
15、压(PAO2)=(PB-47)*FiO2-1.25PaCO2(FiO260%系数为1)2.组织氧含量(CaO2)=1.34*Hb*SaO2+0.003* PaO23.氧摄取率(O2ER)= V O2/ D O2=(SaO2- SvO2)/ SaO2(正常值20%30%)组织氧摄取(VO2)=13.4*CO*Hb*(SaO2- SvO2);成人110160ml/(min*m2)组织氧运输(DO2)=13.4*CO*Hb*SaO2 成人520570ml/(min*m2)2.氧合指数(OI)=FiO2*Pmean*100/ PaO2(5%);PaO2 / FiO2也可表示氧合3.肺内分流(Qs/QT
16、)=(CcO2-CaO2)/(CcO2-CvO2)(10%)估计公式(吸纯氧20min)Qs/QT=35%-(PaO2 /20)%4.死腔与潮气量比(VD/VT)=(PaCO2-PECO2)/ PaCO2 正常值:自主呼吸时20%40%;机械通气时40%60%5.气道峰压(PIP)=气道阻压(PRaw)+气道平台压(Ppla)=R*Flow+V/C+PEEP平均气道压=(PIP-PEEP)*Ti/TOT*K+PEEP (恒压通气K=1;恒流通气K=1/2)6.动态顺应性(Cdyn)=VT/(PIP-PEEP);静态顺应性(Cst)= VT /(Ppla -PEEP)7.肺总量TLC=肺活量VC
17、+残气量RV=深吸气量IC(补吸气量IRV+潮气量VT)+功能残气量FRC(补呼气量ERV+残气量)8.压力换算关系:1cmH2O=0.098kPa;1mmHg=0.133 kPa;1kPa =0.145Psig;1atm1bar100kpaaccumulator贮气箱(装置)adapter接合器,接口adjusting tap调节柄air inlet filter空气输入滤过器airway pressure呼吸道压alarm indicator报警显示alveolar pressure肺泡内压amplifier增幅唇apnea呼吸暂停apnea indicator呼吸暂停显示装置assemb
18、ly装置、组合assistcontrol mode,AC辅助控制通气backup ventilation备用通气bacterial filter细菌滤过器bag囊ballon valve球囊式活瓣bellows风箱bleed regulator排气调节器blower鼓风机calibration校准、定标chamber腔check valve单向阀compensator代偿装置compressor压缩器、压缩装置continuous positive airway pressure(CPAP)持续呼吸道正压continuous flow持续气流control knob调节炳cooling fan
19、冷却扇corrugated hose螺纹管、呼吸管道crossover soleniod交通电磁阀delay dial廷迟设定demand flow按需气流demand valve按需供气阀diaphragm隔膜digital amplir数字型增幅器drive system驱动系统electrical switch电子开关electrodynamic valve电动阀exhaled gas呼出气exhalation time呼出时间exhalation valve呼出阀exhaust valve气体排出活瓣(阀)expired minute volume呼气分钟通气量feed back se
20、rvocontrol反馈伺服控制filling solenoid充气电磁阀(气流开关)filter滤过器flap valve平行阀flow control valve流量控制(调节)阀flowrate流速flow transducer流量传感器flow trigger流量触发(器)flush knob冲洗按键gas outlet气体出口gas samping pump气体采样泵gas supply气体供应generated pressure驱动压generator发生器,产生装置heat exchanger热交换器heat(heated)humidifier加热(温)湿化器high frequ
21、ency ventilation(HFV)高频通气humidifier加湿气infant ventilator婴儿呼吸机inlet输入(口)inspiratory effort自主吸气努力(指示)intermittent positive pressure ventilation(IPPV)间歇正压通气intermittent mandatory ventilation(IMV)间歇指令通气jet喷射,喷射式joint连接器(装置)leak test漏气检查low inspiratory pressure sensor吸气低压传感器low pressure alert低压报警限magnetic
22、 valve电磁阀main compressor主压缩装置(泵)main power总电源manifold多歧管manometer压力计(表)manual手动master solenoid主电磁阀masterslave ventilation(MSV)双肺不同通气membrane膜,隔膜microprocessor微处理器microswitch微开关minute volume分钟通气量mixer混合器injector喷射器、射流装置mode模式motor步进电机moisture trap湿气(水分)清除装置nebulizer雾化器(装置)needle valve针型阀oneway valve单
23、向阀orifice孔、开口overflow valve满溢阀(活瓣)overpressure relif valve过压释放阀oxygen percent control氧浓度调节(控制)oxygen sensor氧传感器parameter参数peak hold switch峰压保持键peak flow dial峰流设定plateau平台plunger插塞pneumotachometer气流速度计piston活塞pop of valve过压释放阀positive end expiratory pressure(PEEP)呼气末正压power supply电源preset volume(pres
24、sure)预置的容量(压力)pressure controlled ventilation(PCV)压力控制通气pressure gauge压力计、压力测量装置pressure manometer压力计(表)pressurereducing valve减压阀pressure regulated volume control ventilation(PRVCV)调压容量控制通气pressure regulator压力调节器pressure relief valve压力释放阀pressure support压力支持pressure support ventilation(PSV)压力支持通气pre
25、ssure transducer压力传感器proportional solenoid比例电磁阀proximal airway line呼吸道压测量联接管ratio率、比值regulator调节器(装置)reservoir hag贮气囊resetkey复原键、恢复键respiratory hag呼吸囊respiratory rate呼吸频率respiratory time吸入时问restrictor气流限制装置reverse flow逆流sensitivity敏感度sensor传感器、测量器sigh pressure息时压力silicone rubber tube硅橡胶管slipjoint滑动关
26、节solenoid电磁阀、电控气流阀(开关)source gas气源spirometer肺活量计spontaneous bag自主呼吸囊spontaneous,spont自主呼吸spring弹簧stopcock气流开关suction吸引support arn1支持臂synchronised intermittent mandatory ventilation(SIMV)同步间歇指令通气synchronised intermittent positive pressure ventilation(SIPPV)同步间歇正压通气temperature sensor温度传感器test lung模拟肺t
27、hermister半导体温度计thermometer温度计tidal volume潮气量time preset key时间预调键tranducer传感器trigger level触发水平tubingcompliance管道顺应性variable orifice可变口valve阀、活瓣vent出口ventilation,vent通气ventilator呼吸机、通气机ventilator settings呼吸机设置venturi文丘里装置volume controlled ventilation(VCV)容量控制通气volume suppofl ventilation(VSV)容量支持通气wate
28、r trap除水装置waveform波形wick加湿器的芯子呼吸机在ICU中的应用 随着危重监护医学的发展,呼吸机已经成为了ICU中几乎每天都需要使用的治疗措施,是呼吸衰竭和生命支持的重要方法。尽管呼吸机包括气道内正压和胸外负压呼吸机,然而,目前临床上主要使用的是气道内正压的呼吸机。下面介绍气道内正压的呼吸机的主要的通气模式的特点及其临床应用。第一节:人工通气的主要目标、重要参数和模式分类一、人工通气的主要目标:主要的目标包括:(1)维持合适的肺泡通气量;(2)改善肺的氧合功能;(3)减轻呼吸肌肉负荷、减少呼吸作功,降低肺和心脏负荷;(4)改善呼吸困难;(5)减少人工通气的并发症(如:气压伤、
29、肺不张、低血压、人机对抗等)。二、重要的参数:无论采用任何形似的呼吸机或者通气模式,都必须考虑到下列的重要参数:(1)提供的气体容量(潮气量,分钟通气量);(2)产生的气道压力(吸气相压力、呼气相压力、压力的变化形式);(3)提供的流量及其形式;(4)呼吸频率、呼吸的时间节律及其转换的机制;(5)其他:如FiO2等。三、通气模式分类1、按辅助通气的程度,可以将通气模式分成:(1)控制通气:如容量控制、压力控制等);(2)辅助通气:如同步间歇指令通气(SIMV)、压力支持(PSV)等;(3)自主呼吸:持续气道内正压(CPAP)。2、按吸呼转换机制的分类:(1)定容型呼吸机:每次给予设定的潮气量后
30、,转变为呼气。(2)压力控制型呼吸机:按照设定的压力水平给予吸气,达到设定的时间或者转换指标后转换成呼气。此外,过去也有使用定压型呼吸机:给予恒定的吸气流量,气道压力从基线开始,在吸气过程中逐渐增加,达到设定的压力后,转变为呼气;目前基本没有使用此类型的呼吸机。(3)定时型呼吸机:给予恒定的吸气流量,持续一定(调定)的时间后,转变为呼气。(4)流量转换型呼吸机:通常按照调定的压力(或者压力范围)吸气,当吸气流量衰减到一个阈值或者出现特定流量波形变化时,转变为呼气。(5)混合型:同时采用多种的吸气呼气转换的机制,只要达到任何一个指标或者同时达到两个指标后,转换成呼气。呼吸机的通气模式比较多,按照
31、使用的频率和特点可以分成3大类:1、 目前常用通气模式:(1)容量控制(CMV;A/C);(2)同步间竭指令通气(SIMV);(3)压力控制(PCV);(4)压力支持(PSV);(5)持续(或呼气末)气道内正压( CPAP或PEEP);(6)混合使用上述的通气模式:如 SIMV+PSVPEEP。2、 新的通气模式:近十年来发展的较新的通气模式主要的特点是同时具备压力限制、容量保证和流量足够可变的特点,这些通气模式包括有:(1)容量支持(VS);(2)压力调控容量转换(PRVC);(3)压力增强(pressure Augmented Venntilation)/容量保证压力支持(VAPS);(4
32、)双水平气道内正压(BiPAP)和气道压力释放(APRV)等。3、 新的探索性使用的模式:闭环通气,比例辅助通气等。4、 新的通气概念:反比通气、允许性高碳酸血症、肺保护和肺开放(防止肺萎陷)的策略等。5、 不常用的通气模式:高频喷射(振荡)通气、气道内吹气、分侧肺通气、体外膜氧合、液体通气、胸外负压通气等。四、吸气触发的机制人工通气过程中,在有可能的情况下,尽可能保留自主呼吸。保留一定程度的自主呼吸可以防止呼吸肌肉萎缩、改善肺内气体分布、降低胸内正压,有利于病人的康复。在这种情况下,病人吸气的同时,能够敏感地同步触发呼吸机是十分重要的。目前常用地同步触发机制包括有:压力触发、流量触发、容量触
33、发、流量自动追踪。在婴幼儿,也有采用胸腹活动来触发呼吸机。从临床的角度来讲,流量型的触发形式(包括流量触发、容量触发、流量自动追踪)的敏感性比较好,也不容易出现自动触发(即病人没有吸气,但是呼吸机误认为病人已经开始吸气,导致呼吸频率异常增加和过度通气)。第二节 常用的通气模式的优缺点比较 目前没有任何一种通气模式可以满足临床上所有的需要。临床医生应该根据病情的需要选择合适的通气模式。下面比较各种常用的通气模式的优缺点。 一、容量控制通气( CMV,A/C):也称作间歇正压通气(IPPV),是一种完全的容量控制通气模式。呼吸机按照设定的潮气量、吸气流量、吸气时间和呼吸频率给予通气。其优点是:保证
34、潮气量和分钟通气量,多数的情况下能够提供全部的通气支持。所有特别适合于无明显自主呼吸的病人。缺点是气道压力变化比较大,有可能出现过高的压力,气压伤的可能性比较大。通气参数的设定难以完全适合病人的需要,也不能根据病人的病情变化而变化,所有其人机同步性较差,对于有明显自主呼吸的病人,比较容易出现人机对抗、病人感觉不舒适、过度通气或吸气流量不协调等。 二、压力控制通气(PCV):每次吸气给予调定的压力和时间。吸气流量按需供给(压力限制,时间转换),没有固定的潮气量。其优点是能够控制气道压力,气压伤的可能性降低,有利于肺泡开放和气体分布。缺点是潮气量不保证(决定于呼吸系统的有效顺应性和给予的吸气压力和
35、时间),设定吸气时间与病人的吸气时间不合时,导致病人感觉不适和人机不同步。主要应用于需要控制气道压力(避免气压伤)和充分镇静状态下的病人。三、压力支持通气(PSV):PSV的特点是由病人触发每一个吸气,吸气相给予恒定的正压,吸气的流量足够可变(根据实际的需要)。当吸气流量下降到一定的水平时,转换为呼气。PSV的特点病者触发,呼吸机提供吸气辅助性压力和流量,病人的吸气努力、PSV的水平和呼吸系统的有效顺应性三方面共同决定吸气的潮气量、实际的吸气流量和吸气时间。最终达到人机共同作用完成每一个呼吸,降低呼吸肌肉的负荷,增加通气量的目的。PSV应用指征前题是有比较强的自主呼吸的状态,特别适合于一般状态
36、比较好,但存在呼吸费力的病人,也常用于人机对抗的病人的处理。缺点是潮气量和分钟通气量不恒定,不适合用于昏迷或自主呼吸微弱的病人。四、同步间歇指令通气(SIMV):SIMV是指在给予指定的基础呼吸频率的容量控制或压力控制通气的同时,允许有自主呼吸的通气模式。通常将每分钟分成若干个时间段(由SIMV的频率决定),每一个时间段给予一次的控制通气,其余的时间允许自主呼吸。在自主呼吸期间,可以同时使用辅助通气的模式(如:PSV)。实际的分钟通气量由呼吸机指令通气和患者的自主通气两部分组成。与CMV相比SIMV具备有下列的优点:避免或减少镇静剂或肌松剂的应用。减少呼吸性碱中毒的发生。预防呼吸肌萎缩。加速撤
37、机过程。减少对循环功能的干扰和气压伤的发生率。缺点是基础频率的控制呼吸的参数较难与病人的吸气流量、容量和时间节律完全适应,导致该时段的人机不同步。自主呼吸时段有可能导致呼吸负荷过重,增加呼吸肌肉负荷。SIMV主要适用于呼吸衰竭的恢复过程和撤机过程中,其在撤机中。也有用于解决人机对抗的问题。五、压力调节容量控制通气(Pressure regulated volume control ventilation, PRVC):PRVC是一种压力控制,时间切换的通气模式。其特点是呼吸机连续测定呼吸系统有效顺应性(受肺、胸廓、气道阻力的共同影响),自动调整压力控制水平,保证潮气量。呼吸机首次送气从低压开始
38、(起始的压力为5cmH2O),呼吸机自动计算该压力下获得的潮气量。在随后的三次通气中,呼吸机逐步调整压力水平,每次通气之间的压力差不超过3cmH2O。首先以达到75的预定潮气量为目标自动调节压力;此后呼吸机根据自动调节后的压力和潮气量再次计算呼吸系统有效顺应性,随后再自动调节吸气压力以便达到预定的潮气量。最大压力不超过预定压力(压力上限)下5cmH2O。 PRVC可用于控制性通气,避免了压力控制时潮气量不保证的缺点,也避免了容量控制时可能出现的吸气流量不匹配的问题。应用PRVC时应注意调节合适的最大压力上限水平,压力水平过低达不到预设潮气量,压力水平过高则安全性差。此外,如果病人的呼吸的努力在
39、不断的变化时,PRVC的调节有可能无法完成;当病人的吸气努力较强时,也有可能出现病人的吸气时间与设定的吸气时间不一致的情况。 六、容积支持通气(volume Support Ventilation,VS, 也有称作容量辅助通气):VS是一种压力辅助,流量或容量切换的通气模式。其工作方式类似于 PSV,不同之处是压力辅助的水平自动增加,使实际的潮气量接近设定的目标潮气量。调节的原理与PRVC相似。当患者的自主呼吸消失时VS模式将会自动转为PRVC模式。七、适应性压力通气(adaptive pressure ventilation, APV):是一种能适应病人通气的需求的自动模式。APV是通过自动
40、调节吸气的压力水平来达到目标的潮气量的目的,其工作原理为:连续五次通气以测定病人的呼吸系统有效的动态顺应性;计算并以最低的气道压力达到所需目标潮气量。当顺应性及病人的呼吸状态发生改变时,APV通过改变气道压力来实现预定潮气量。ASV主要优点有:自动调节吸气压力来适应病人的通气需求,可用于自主及指令性通气,当病人自主呼吸停止时,ASV则自动转换为指令性通气;而当自主呼吸恢复时,ASV自动进入支持通气阶段;ASV是第一个自动撤机支持系统,ASV可以用于开始人工通气时到脱机过程的病人。ASV能提供安全的最低分钟通气量;ASV能持续监测病人每一次呼吸的顺应性、气道阻力及自主呼吸状况。然而,ASV只是根
41、据呼吸系统有效顺应性的情况来调节通气支持的参数,无法根据病人的总体情况来综合调节。因此,不宜盲目应用。 八、压力增强通气(Pressure augmented ventilation):此通气模式是在PSV的基础上增加保证潮气量的功能。压力增强通气时,应首先预设适当的PSV水平,然后选择一个最小的潮气量和备用支持吸气流量。如果PSV水平产生的潮气量超过设定的最小潮气量时,无压力增强,呼吸机仍按流量切换方式转化为呼气;如果PSV产生的潮气量低于预设的最小潮气量时,备用支持气流装置向病人提供气流,直到达到预设的潮气量后停止。此时气道内压力增加并超过PSV水平,呼吸机以容量方式切换。压力增强虽然解决
42、了PSV时没有潮气量保证的问题。缺点是在压力增强期间,有可能出现人机不同步或者对抗。此外,因其没有呼吸频率的备用支持,病人仍有发生窒息的危险。 九、分钟指令通气( mandatory minute volume ventilation,MVV):MVV是一种自主呼吸和或机械通气相结合保证达到预设分钟通气量的通气模式。当病人的自主呼吸达到预设分钟通气量后,呼吸机不产生强制的控制通气。否则,呼吸机将自动补偿自主呼吸未完成的通气量。应用MVV时需要选择一个适当的目标分钟通气量,目标是保证基本的通气量的需求。从理论上讲,MVV用在撤机过程中比较合适,当自主呼吸发生变化时不需要医生反复调节呼吸机频率,但
43、临床研究的结果显示,其效果并不优于其他撤机方法。 十、气道压力释放通气(Airway Pressure Release Ventilation,APRV):APRV是在CPAP基础上,通过间歇释放(降低)气道内压力来实现肺泡通气的一种新的通气模式。也就是说,在给予一个较高水平的持续气道内正压(高水平CPAP)的基础上,按照一定的时间节律降低CPAP的水平(低水平CPAP)。在高水平CPAP和低水平CPAP的转换过程中的产生通气的效果。无论在低水平或高水平的CPAP时,病人可以自主呼吸。所以,APRV保留了患者的自主呼吸功能,并保持大部分时间的气道内高水平的正压和辅助通气的功能。上述特点使APR
44、V具有改善氧合效果好、气道内压力低、对血流动力学影响小和气压伤发生率低的优点。APRV使用时,通常需要一定程度的镇静。 十一、反比通气(inverse ratio ventilation,IRV),常规通气照人们平常的呼吸方式,一般预置吸气时间小于呼气时间。常用的吸呼比为1:1.53。如果通气机的吸气时间呼气时间,吸呼时间之比1(通常为14:1),即称为反比通气。可用各种技术来延长吸气时间,如:吸气末暂停,吸气峰流量降低或吸气压力的限制等。每一种技术可引起不同的临床结果。目前主要应用压力控制反比通气(pressure-controlled IRV,PC-IRV)。PC-IRV有以下好处:(1)
45、增加肺的功能残气量使气体在肺内的交换时间延长,有利于肺内的气体交换和氧的弥散;(2)吸气时间延长,使吸气峰压降低,可预防肺气压伤以及使气体在肺内的分布更加均匀;(3)送气时间延长,呼气时间缩短,使肺内产生气体滞留,气道产生PEEP,从而有利于防治肺的微小萎陷,使痉挛的气道开放;(4)增加肺泡的复张,稳定和改善气体的弥散。应用PC-IRV的主要副作用是:(1)人机不同步和患者感觉不适,所以必须应用肌肉松弛剂或强安定剂抑制患者的自主呼吸;(2)呼气时间的限制导致气体的陷闭和自动PEEP的发生,以及平均气道压的增加,其对心血管系统的抑制和减少重要脏器的血流灌注的结果与加用PEEP的机理是一样的。同样
46、,受影响的肺带经常处于过度扩张状态,虽然降低了气道峰压,但发生肺泡破裂和气压伤的危险还是依然存在的。呼吸机的通气模式比较多,不同的厂家生产的呼吸机的设计也有一定的差异。不常用的通气模式请参照有关的专著。在临床工作中,最重要的问题是如何根据每一个病人的病理生理特点和临床实际情况,选择合适的通气模式和参数。 第三节 机械通气参数的调节 一、分钟通气量(VE)、潮气量(VT)和呼吸频率(F)的设置 目前多数呼吸机通过调节潮气量(VT)和呼吸频率(F)来调节分钟通气量(VE),即:VE=VTF。也有一些旧的呼吸机直接调节VE和F,呼吸机自动计算相应的潮气量。成人常用的VE为812升/分,VT为812ml/kg,F为1222次/分。需要根据气道压力、PaCO2、病人的感觉和具体情况来调整。当选用压力控制通气时,无法直接设定VE,需要通过呼出气监测,计算实际的VE和VT。 二、吸入氧浓度(FiO2)的调节 机械通气开始时,为了尽快改善患者的缺氧,FiO2的调节通常从10开始,当病人的呼吸困难和缺氧改善后,依据PaO2或SpO2%逐渐下调FiO2。如果没有氧合功能异常,通常可以在数小时内将FiO2下调到0.6。当FiO2低于0.6时,通常不会导致氧中毒。如果存在氧合功能异常,则需要使用PEEP来协助改善氧合功能后,再逐渐缓慢降低FiO2。 三、触发灵敏度的调节 调节触发灵敏度的主