一种低待机功耗开关电源充电器的设计(完整版)实用资料.doc

上传人:可****阿 文档编号:91775838 上传时间:2023-05-27 格式:DOC 页数:73 大小:1.91MB
返回 下载 相关 举报
一种低待机功耗开关电源充电器的设计(完整版)实用资料.doc_第1页
第1页 / 共73页
一种低待机功耗开关电源充电器的设计(完整版)实用资料.doc_第2页
第2页 / 共73页
点击查看更多>>
资源描述

《一种低待机功耗开关电源充电器的设计(完整版)实用资料.doc》由会员分享,可在线阅读,更多相关《一种低待机功耗开关电源充电器的设计(完整版)实用资料.doc(73页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、一种低待机功耗开关电源充电器的设计(完整版)实用资料(可以直接使用,可编辑 完整版实用资料,欢迎下载)-51-一种低待机功耗开关电源充电器的设计王利清1,刘东2(1.北京交通大学电子信息工程学院运输自动化研究所,北京100044;2.江西省宜春学院基础部,江西宜春336000摘要:简要介绍了安森美半导体(ONSEMI 公司开发的一款可变关断时间开关电源控制器NCP1215的主要特点和内部结构,给出了选用NCP1215控制器设计的一种极低待机功耗的开关电源充电器的实际电路。关键词:开关电源;充电器;低功耗;NCP1215分类号:T N86文献标识码:A文章编号:1006-6977(200410-

2、0051-03Desi g n of a Low Standb y Pow er Consum p tion Switchin g Pow er Su pp l y Char g erW ANGLi-q in g ,LIU D on gAbstract :T he characters and internal structure of NCP1215,which is a controller of sw itchin g m ode p ow er su p 2p l y w ith variable OFF tim e control m ethod ,develo p ed b y O

3、NSEMI ,are p resented briefl y .Its p ow er consum p 2tion is decreased b y the control m ethod of invariable ON tim e and variable OFF tim e ,when it is at li g ht load or it is standb y .Based on this kind of controller ,a low standb y p ow er consum p tion sw itchin g p ow er su pp l y char g 2er

4、 is desi g ned.K e y w ords :Sw itchin g M ode P ow er Su pp l y ;Char g er ;Low P ow er C onsum p tionNCP1215新特器件应用一种低待机功耗开关电源充电器的设计压达到齐纳二极管DZ1的击穿值(9.1V ,DZ1将导通,从而使晶体管Q2和Q1导通,变换器截止。实际上,Q1和Q2相当于一个SCR 结构。在Q1导通时,通过灯管左端(1、2引脚之间灯丝的电流经由R9、R10和Q1、R12流到接地端,这样就可在更换灯管后使电路复位。为防止VK 05CF L 中的双向交流二极管(Diac 重新启动,C

5、11(即U2脚2上的电压应低于Diac 的导通门限。3.3自动重启自动重启功能由U2脚2上的R9、C11及连接在DC 干线上的灯丝(1、2灯管之间来完成。当灯未接入或灯阴极熔断时,电容C11不能被充电,U2截止,镇流器处于关断状态。当用新灯管替换后,系统执行正常的启动程序。而在图2所示的应用电路中,U2脚2上的RC 网络(R2与C8由于直接连接在DC 总线上,而没有经过灯丝,因此不具有自动重启功能。4结束语由于VK 05CF L 内置采用VIP ow er M3专用工艺制作的组合式功率开关及二极管交流开关(Diac 和振荡电路,因而高温性能优异,坚固耐用,适用于523W 的CF L 电子镇流器

6、。为进一步提高基于VK 05CF L 的电子镇流器性能,设计时可以附加预热电路和EOL 保护电路。此外,将低端VK 05CF L Diac 脚的外部RC 启动网络通过灯丝连接到DC 母线,还可以实现自动重启功能。收稿日期:2004-04-05咨询编号:0410141引言开关电源以其体积小、重量轻、电能转换效率高等特点而被广泛应用于通信、控制等电子系统中。随着各种手持、移动消费类电子产品的普及和能源问题的日益突出,对开关电源的运行功耗和电能转换效率也提出了更高的要求。电子产品的能量消耗通常有两种截然不同的模式1:即运行模式和待机模式。运行模式时,在保证产品性能的前提下,可以通过降低各部分的能耗来

7、实现节能(如在电路设计过程中选用低功耗元器件等;待机模式时,电路中的唤醒单元是永久供电的,-52-国外电子元器件2004年第10期2004年10月 图1NCP1215内部原理框图以便随时准备使整个系统重新运行,传统降低待机功耗的办法是:断开负载而保持电源运行。文献1中提出了一种完全断开系统电源,同时设置一个微功率副电源来支持唤醒单元的办法,但设置副电源会增加电路的复杂度和成本。为解决以上问题,本文给出了一种基于NCP1215的新型低功耗开关电源充电器的设计方案。2NCP1215的特点安森美半导体(ONSEMI 公司推出的NCP1215是一种低功率离线反激开关电源(SMPS 控制器,该器件通过使

8、用恒定导通时间、可变关断时间的拓扑方法,来在低负载或待机时降低开关损耗,从而实现严格的输出调节。该器件的特点如下:(1采用可变关断时间的控制方式可在功率需求降低时使关断时间延长,并在轻负载时使开关频率降低,从而减少开关损耗,以获得最佳的待机功耗指标。(2非常低的启动电流,可以使用高阻值的外部启动电阻来大幅度的减少启动电流,以提高工作效率并减小待机功耗。(3利用自然频率抖动来降低EMI 噪声。由于开关频率随着纹波电压幅度的改变会产生轻微抖动,因此,设计时可以利用这一点来在开关导通时间几乎恒定不变的工作模式下降低EMI 噪声。(4本器件采用的电流控制模式比电压控制模式具有更快的系统响应速度。(5通

9、过峰值电流抑制来降低变压器噪声,因为当负载减少时,开关频率可降到音频范围。为此,为了避免引起变压器的机械谐振而产生音频噪声,NCP1215在输出功率降低时,采用了峰值电流抑制技术来解决变压器的音频噪声问题,从而使用户在电路设计过程中可以采用廉价的变压器来降低设计成本。(6由于创新的初级电流检测技术不改变开关过程中M OSFET 的驱动电压,而且由可变电阻和引脚电容构成的滤波器还可以滤除尖峰噪声。因此,将初级电流固定在最大值可用来设置最大功率门限。(7具有可调的初级电流检测功能,通过NCP1215提供的第二个峰值电流调节变量可提高电路设计的灵活性。(8反馈环路允许简单的二次或一次调节而不增加额外

10、的元器件。NCP1215采用SO -8和T SOP -6两种封装,其内部原理图如图1所示2,引脚功能见表12。其中, -53-一种低待机功耗开关电源充电器的设计 图2开关电源充电器电路结构框图 图3开关电源充电器实用电路反馈环路可通过调节开关关断时间来控制开关电源(SMPS 的输出电压。由图1可见,该电路主要由反馈环路控制、关断时间比较器、电流比较器和电流检测等部分构成。栅极驱动单元由CM OS 缓冲构成,可直接驱动功率M OSFET 以实现快速、低EMI 噪声的关断和导通操作。当芯片的供电电压低于电压下限时,栅极驱动单元将输出低电平。3应用电路设计基于NCP1215的低待机功耗开关电源充电器

11、电路框图如图2所示,该电路主要用于铁路现场手持式移频信号检测仪表的充电。图中,NCP1215的工作电压由交流220V 经整流和滤波等处理后提供。以NCP1215为核心的DC -DC 开关电源可提供充电电路所需的充电电压和工作电压。充电电路采用德州仪器公司(TI 的充电控制芯片BQ24202来进行设计,该控制芯片内部集成了功率场效应管(p ow erFET 、高精度电压基准、温度监测、充电状态显示、充电完成输出等模块。该设计方案所需外围器件较少,电路简洁实用。图3给出了该开关电源充电器的实用电路。该电路的输入为220V 交流市电,充电电池为LG 公司的锂离子电池,充电电压为6V 。当充电完成后,

12、BQ24202进入休眠状态,与此同时,NCP1215的关断时间延长,开关频率降低,系统整体功耗也降到最低。图3中各元器件的具体参数值可根据实际系统设计指标,并通过参考文献2中给出的计算方法来获得。4结束语低功耗、低成本的“绿色”电源是未来电源的发展方向。NCP1215的推出使得设计人员可以方便、快捷地开发出符合美国能源之星(Ener gy Star 和欧洲蓝天使(Blue An g el 低待机功耗电源方案要求的高可靠性开关电源3。NCP1215非常适合应用于离线电源充电器、辅助和待机电源、以及消费电子产品(如 、数码照相机和MPEG 播放器中2W 5W的交流-直流适配器3中。参考文献1胡乾顺

13、,胡大友.待机功耗特低的开关电源J .国外电子元器件,2003,(8.2NCP1215DAT ASHEET,ON SEMICONDUCT OR COMPONENT S INDUST RIES ,LLC ,2003.3安森美可变断开时间开关电源控制器E B/OL.htt p :/w w w.21ic ,2003-10.收稿日期:2004-04-06咨询编号:041015提高开关电源待机效率的方法时间: 1 引言随着能源效率和环保的日益重要,人们对开关电源待机效率期望越来越高,客户要求电源制造商提供的电源产品能满足BLUE ANGEL,ENERGY STAR, ENERGY 2000等绿色能源标准

14、,而欧盟对开关电源的要求是:到2005年,额定功率为0.3W15W,15W50W和50W75W的开关电源,待机功耗需分别小于0.3W,0.5W和0.75W。而目前大多数开关电源由额定负载转入轻载和待机状态时,电源效率急剧下降,待机效率不能满足要求。这就给电源设计工程师们提出了新的挑战。2 开关电源功耗分析要减小开关电源待机损耗,提高待机效率,首先要分析开关电源损耗的构成。以反激式电源为例,其工作损耗主要表现为:MOSFET导通损耗,MOSFET寄生电容损耗,开关交叠损耗,PWM控制器及其启动电阻损耗,输出整流管损耗,箝位保护电路损耗,反馈电路损耗等。其中前三个损耗与频率成正比关系,即与单位时间

15、内器件开关次数成正比。在待机状态,主电路电流较小,MOSFET导通时间ton很小,电路工作在DCM模式,故相关的导通损耗,次级整流管损耗等较小,此时损耗主要由寄生电容损耗和开关交叠损耗和启动电阻损耗构成。3 提高待机效率的方法根据损耗分析可知,切断启动电阻,降低开关频率,减小开关次数可减小待机损耗,提高待机效率。具体的方法有:降低时钟频率;由高频工作模式切换至低频工作模式,如准谐振模式(Quasi Resonant,QR)切换至脉宽调制(Pulse Width Modulation,PWM), 脉宽调制切换至脉冲频率调制(Pulse Frequency Modulation, PFM);可控脉

16、冲模式(Burst Mode)。3.1 切断启动电阻对于反激式电源,启动后控制芯片由辅助绕组供电,启动电阻上压降为300V左右。设启动电阻取值为47k,消耗功率将近2W。要改善待机效率,必须在启动后将该电阻通道切断。TOPSWITCH,ICE2DS02G内部设有专门的启动电路,可在启动后关闭该电阻。若控制器没有专门启动电路,也可在启动电阻串接电容,其启动后的损耗可逐渐下降至零。缺点是电源不能自重启,只有断开输入电压,使电容放电后才能再次启动电路。而图1所示的启动电路,则可避免以上问题,而且该电路功耗仅为0.03W。不过电路增加了复杂度和成本。3.2降低时钟频率 时钟频率可平滑下降或突降。平滑下

17、降就是当反馈量超过某一阈值,通过特定模块,实现时钟频率的线性下降。POWER公司的TOPSwitch-GX和SG公司的SG6848芯片内置了这样的模块,能根据负载大小调节频率,图2所示是SG6848时钟频率与其反馈电流的关系。图2SG6848反馈电流与时钟频率的关系突降实现方法如图3:以UCC3895为例,当电源处于正常负载状态时,Q1导通,其时钟周期为:当电源进入待机状态时,Q1关闭,时钟周期增大为即开关频率减小。开关损耗降为降频前的(小于1)倍。L5991和Infineon公司的CoolSet F2系列已经集成了该功能。3.3 切换工作模式 QRPWM对于工作在高频工作模式的开关电源,在待

18、机时切换至低频工作模式可减小待机损耗。例如,对于准谐振式开关电源(工作频率为几百kHz到几MHz),可在待机时切换至低频的脉宽调制控制模式PWM(几十kHz)。IRIS40xx芯片就是通过QR与PWM切换来提高待机效率的。图4是IRIS4015构成的反激式开关电源,重载时,辅助绕组电压大,R1分压大于0.6V,Q1导通,辅助准谐振信号经过D1,D2,R3,C2构成的延时电路到达IRIS4015的FB脚,内部比较器对该信号进行比较,电路工作在准谐振模式。当电源处于轻载和待机时候,辅助绕组电压较小,Q1关断,谐振信号不能传输至FB端,FB电压小于芯片内部的一个门限电压,不能触发准谐振模式,电路则工

19、作在更低频的脉宽调制控制模式。图4 由IRIS4015构成的QR/PWM反激式电源电路3.3.2 PWMPFM对于额定功率时工作在PWM模式的开关电源,也可以通过切换至PFM模式提高待机效率,即固定开通时间,调节关断时间,负载越低,关断时间越长,工作频率也越低。图5是采用NS公司的LM2618控制的Buck转换器电路和分别采用PWM和PFM控制方法的效率比较曲线。由图可见,在轻载时采用PFM模式的电源效率明显大于采用PWM模式时的效率,且负载越低,PFM效率优势越明显。将待机信号加在其PW/引脚上,在额定负载条件下,该引脚为高电平,电路工作在PWM模式,当负载低于某个阈值时,该引脚被拉为低电平

20、,电路工作在PFM模式。实现PWM和PFM的切换,也就提高了轻载和待机状态时的电源效率。通过降低时钟频率和切换工作模式实现降低待机工作频率,提高待机效率,可保持控制器一直在运作,在整个负载范围中,输出都能被妥善的调节。即使负载从零激增至满负载的情况下,能够快速反应,反之亦然。输出电压降和过冲值都保持在允许范围内。3.4 可控脉冲模式(Burst Mode)可控脉冲模式,也可称为跳周期控制模式(Skip Cycle Mode)是指当处于轻载或待机条件时,由周期比PWM控制器时钟周期大的信号控制电路某一环节,使得PWM的输出脉冲周期性的有效或失效,如图6所示。这样即可实现恒定频率下通过减小开关次数

21、,增大占空比来提高轻载和待机的效率。该信号可以加在反馈通道,PWM信号输出通道,PWM芯片的使能引脚(如LM2618,L6565)或者是芯片内部模块(如NCP1200,FSD200,L6565和TinySwitch系列芯片)。图6 Burst Mode控制信号与驱动信号图NCP1200的内部跳周期模块结构见图7,当反馈检测脚FB的电压低于1.2V(该值可编程)时,跳周期比较器控制Q触发器,使输出关闭若干时钟周期,也即跳过若干个周期,负载越轻,跳过的周期也越多。为免音频噪音,只有在峰值电流降至某个设定值时,跳周期模式才有效。图7 NCP1200跳周期模块结构而FSD200则是通过控制内部驱动器实

22、现可控脉冲模式,即将脚的反馈电压与0.6V/0.5V迟滞比较器比较,由比较结果控制门极驱动输出,其结构可见图8。我们可根据此原理用分立元件实现普通芯片的Burst Mode功能,即检测次级电压判断电源是否处于待机状态,通过迟滞比较器,控制芯片输出,电路如图9所示。控制反馈通道是实现一般PWM控制器的可控脉冲模式的方法之一。其电路可见图10,是反馈信号,当Burst Signal为低电平时,Q1关断,电路正常工作,当Burst Signal为低电平时,Q1导通,R1被短路,流过Q1,被拉高至-0.6V,反馈信号不能反映在上,控制器因此输出低电平。另外对于有使能脚的PWM控制器,如L6565等,用

23、可控脉冲信号控制使能脚使控制芯片有效或失效,也可以实现Burst Mode,上述Burst Signal可由图1中所示的迟滞比较器产生。图10 控制反馈通道的Burst Mode4 存在的问题以上介绍的降频和Burst Mode方法在提高待机效率的同时,也带来一些问题,首先是频率降低导致输出电压纹波的增加,其次如果频率降至20kHz以内,可能有音频噪音。而在Burst Mode的OFF时期内,如果负载激增,输出电压会大大降低,如果输出电容不够大,电压甚至可能降低至零。如果增大输出电容,以减小输出电压纹波,则会导致成本增加,并会影响系统动态性能。因此必须综合考虑。 开关电源功率变压器的设计方法

24、清华大学自动化系张乃国(北京100084)摘要:从开关电源功率变压器的特性和要求引出设计步骤及计算公式。其设计方法参考原电子工业部“指导性技术文件SJ/Z2921”。1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可

25、以看出脉冲变压器带来的波形失真主要有以下几个方面: 图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。图中:Rsi信号源Ui的内阻Rp一次绕组的电阻Rm磁心损耗(对铁氧体磁心,可以忽略)T理想变压器Rso二次绕组的电阻RL负载电阻C1、C2一次和二次绕组的等效分布电容Lin、Lis一次和

26、二次绕组的漏感Lm1一次绕组电感,也叫励磁电感n理想变压器的匝数比,n=N1/N2 图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL是RL等效到一次侧的阻值,RL=RL/n2,折合后的输出电压Uo=Uo/n。经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。脉冲的上升沿和下降沿包含着各种高频分量,而脉冲的

27、平顶部分包含着各种低频分量。因此在上升、下降和平顶过程中,各元件(L、C等)表现出来的阻抗也不一样,因此我们把这一过程分成几个阶段来分析,分别找出各阶段起主要作用的元件,而忽略次要的因素。例如,当输入信号为矩形脉冲时,可以分3个阶段来分析,即上升阶段、平顶阶段和下降阶段。(1)上升阶段对于通常的正脉冲而言,上升阶段即脉冲前沿,信号中包含丰富的高频成分,当高频分量通过脉冲变压器时,在图3所示的等效电路中,C的容抗1/C很小,而Lm1的感抗Lm1很大,相比起来,可将Lm1的作用忽略,而在串联的支路中,Li的作用即较为显著。于是可以把图3所示的等效电路简化成图4所示的等效电路。 图3图2的等效电路

28、图4图3的简化电路在这个电路中,频率越高,Li越大,而1/C越小,因而高频信号大多降在Li上,输出的高频分量就减少了,可见输入信号Usm前沿中所包含的高频分量就不能完全传输到输出端,频率越高的成分到达输出端越小,结果在输出端得到的波形前沿就和输入波形不同,即产生了失真。要想减小这种波形失真,就要尽量减小分布电容C(应减小变压器一次绕组的匝数)。但又要得到一定的绕组电感量,所以需要用高磁导率的磁心。在绕制上也可以采取一些措施来减小分布电容,例如用分段绕法;为了减小漏感L1,可采用一、二次绕组交叠绕法等。(2)平顶阶段脉冲的平顶包含着各种低频分量。在低频情况下,并联在输出端的3个元件中,电容C的容

29、抗1/C很大,因此电容C可以忽略。同时在串联支路中,Li的感抗Li很小,也可以略去。所以又可以把图3电路简化为图5所示的低频等效电路。信号源也可以等效成电动势为Usm的直流电源。这里可用下述公式表达Uo=(UsmRL)eT/(RsRL)=Lm1(RsRL)RsRL可见Uo为一下降的指数波形,其下降速度决定于时间常数,越大,下降越慢,即波形失真越小。为此,应尽量加大Lm1,而减小Rs和RL,但这是有限的。如果Lm1太大,必然使绕组的匝数很多,这将导致绕组分布电容加大,致使脉冲上升沿变坏。 图5图3的低频等效电路 图6脉冲下降阶段的等效电路(3)下降阶段下降阶段的信号源相当于直流电源Usm串联的开

30、关S由闭合到断开的阶段,它与上升阶段虽然是相对的过程,但有两个不同;一是电感Lm1中有励磁电流,并开始释放,因此Lm1不能略去;二是开关S断开后,Rs便不起作用,由此得出下降阶段的等效电路,见图6。一般来说,在脉冲变压器平顶阶段以后,Lm1中存储了比较大的磁能,因此在开关断开后,会出现剧烈的振荡,并产生很大的下冲。为了消除下冲往往采用阻尼措施。2功率变压器的参数及公式2.1变压器的基本参数在磁路中,磁通集中的程度,称为磁通密度或磁感应强度,用B表示,单位是特斯拉(T),通常仍用高斯(GS)单位,1T=104GS。另一方面,产生磁通的磁力称为磁场强度,用符号H表示,单位是A/mH=0.4NI/l

31、i式中:N绕组匝数I电流强度li磁路长度磁性材料的磁滞回线表示磁性材料被完全磁化和完全去磁化这一过程的磁特性变化。图7为一典型的磁化曲线。由坐标0点到a点这段曲线称起始磁化曲线。曲线中的一些关键点是十分重要的,BS:饱和磁通密度,Br:剩磁,HC:矫顽磁力。当Br越接近于BS值时,磁滞曲线的形状越接近于矩形,见图8(a),同时矫顽磁力HC越大时,磁滞曲线越宽,这表明这种磁性材料的磁化特性越硬,表明这种材料为硬磁性材料。当Br和BS相差越大,矫顽磁力HC越小时,即磁滞曲线越瘦,表明这种材料为软磁性材料,脉冲变压器的磁心材料应选用软磁性材料,见图8(b)。 图7不带气隙的磁滞回线 图8硬/软磁性材

32、料和磁滞回线 (a)硬磁材料(b)软磁材料如果在磁心中开一个气隙,将建立起一个有气隙的磁路,它会改变磁路的有效长度。因为空气隙的磁导率为1,所以有效磁路长度le为le=liilg式中:li磁性材料中的磁路长度lg空气隙的磁路长度i磁性材料的磁导率对一个给定安匝数,有空气隙磁心的磁通密度要比没有空气隙的磁通密度小。2.2设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T)Bm=(Up104)/KfNpSc式中:Up变压器一次绕组上所加电压(V)f脉冲变压器工作频率(Hz)Np变压器一次绕组匝数(匝)Sc磁心有效截面积(cm2)K系数,对正弦波为4.44,

33、对矩形波为4.0一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。变压器输出功率可由下式计算(单位:W)Po=1.16BmfjScSo105式中:j导线电流密度(A/mm2)Sc磁心的有效截面积(cm2)So磁心的窗口面积(cm2)3对功率变压器的要求(1)漏感要小图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。(2)避免瞬态饱和一般工频电源变压器的工作磁通密度设计

34、在BH曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。(3)要考虑温度影响开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特

35、性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40考虑,磁心温度可达6080,一般选择Bm=0.20.4T,即20004000GS。(4)合理进行结构设计从结构上看,有下列几个因素应当给予考虑:漏磁要小,减小绕组的漏感;便于绕制,引出线及变压器安装要方便,以利于生产和维护;便于散热。4磁心材料的选择软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变

36、压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4KR10K,即相对磁导率为400010000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。开关电源用铁氧体磁性材应满足以下要求:(1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从理论上讲,

37、Bs高,变压器的绕组匝数可以减小,铜损也随之减小。在实际应用中,开关电源高频变换器的电路形式很多,对于变压器而言,其工作形式可分为两大类:1)双极性。电路为半桥、全桥、推挽等。变压器一次绕组里正负半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通变化,也是对称的上下移动,B的最大变化范围为B=2Bm,磁心中的直流分量基本抵消。2)单极性。电路为单端正激、单端反激等,变压器一次绕组在1个周期内加上1个单向的方波脉冲电压(单端反激式如此)。变压器磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化,见图7,这时的B=BmBr,若减小Br,增大饱和磁通密度Bs,可以提高B,降低匝数,

38、减小铜耗。(2)在高频下具有较低的功率损耗铁氧体的功率损耗,不仅影响电源输出效率,同时会导致磁心发热,波形畸变等不良后果。变压器的发热问题,在实际应用中极为普遍,它主要是由变压器的铜损和磁心损耗引起的。如果在设计变压器时,Bm选择过低,绕组匝数过多,就会导致绕组发热,并同时向磁心传输热量,使磁心发热。反之,若磁心发热为主体,也会导致绕组发热。选择铁氧体材料时,要求功率损耗随温度的变化呈负温度系数关系。这是因为,假如磁心损耗为发热主体,使变压器温度上升,而温度上升又导致磁心损耗进一步增大,从而形成恶性循环,最终将使功率管和变压器及其他一些元件烧毁。因此国内外在研制功率铁氧体时,必须解决磁性材料本

39、身功率损耗负温度系数问题,这也是电源用磁性材料的一个显著特点,日本TDK公司的PC40及国产的R2KB等材料均能满足这一要求。(3)适中的磁导率相对磁导率究竟选取多少合适呢?这要根据实际线路的开关频率来决定,一般相对磁导率为2000的材料,其适用频率在300kHz以下,有时也可以高些,但最高不能高于500kHz。对于高于这一频段的材料,应选择磁导率偏低一点的磁性材料,一般为1300左右。(4)较高的居里温度居里温度是表示磁性材料失去磁特性的温度,一般材料的居里温度在200以上,但是变压器的实际工作温度不应高于80,这是因为在100以上时,其饱和磁通密度Bs已跌至常温时的70。因此过高的工作温度

40、会使磁心的饱和磁通密度跌落的更严重。再者,当高于100时,其功耗已经呈正温度系数,会导致恶性循环。对于R2KB2材料,其允许功耗对应的温度已经达到110,居里温度高达240,满足高温使用要求。5开关电源功率变压器的设计方法5.1双极性开关电源变压器的计算设计前应确定下列基本条件:电路形式,开关工作频率,变压器输入电压幅值,开关功率管最大导通时间,变压器输出电压电流,输出侧整流电路形式,对漏感及分布电容的要求,工作环境条件等。(1)确定磁心尺寸1)求变压器计算功率PtPt的大小取决于变压器输出功率及输出侧整流电路形式:全桥电路,桥式整流:Pt=(11/n)Po半桥电路,双半波整流:Pt=(1/n

41、)Po推挽电路,双半波整流:Pt=(/n)Po式中:Po=UoIo,直流输出功率。Pt可在(22.8)Po范围内变化,Po及Pt均以瓦(W)为单位。n=N1/N2,变压匝数比。2)确定磁通密度BmBm与磁心的材料、结构形式及工作频率等因素有关,又要考虑温升及磁心不饱和等要求。对于铁氧体磁心多采用0.3T(特斯拉)左右。3)计算磁心面积乘积SpSp等于磁心截面积Sc(cm2)及窗口截面积So(cm2)的乘积,即Sp=ScSo=(Pt104)/4BmfKwKj1.16(cm4)式中:Kw窗口占空系数,与导线粗细、绕制工艺及漏感和分布电容的要求等有关。一般低压电源变压器取Kw=0.20.4。Kj电流

42、密度系数,与铁心形式、温升要求等有关。对于常用的E型磁心,当温升要求为25时,Kj=366;要求50时,Kj=534。环型磁心,当温升要求为25时,Kj=250;要求50时,Kj=365。由Sp值选择适用于或接近于Sp的磁性材料、结构形式和磁心规格。(2)计算绕组匝数1)一次绕组匝数:N1=(Up1ton102)/2BmSc(匝)式中:Up1一次绕组输入电压幅值(V)ton一次绕组输入电压脉冲宽度(s)2)二次绕组匝数:N2=(Up2N1)/Up1(匝)Ni=(UpiN1)/Up1(匝)式中:Up2Upi二次绕组输出电压幅值(V)(3)选择绕组导线导线截面积Smi=Ii/j(mm2)式中:Ii

43、各绕组电流有效值(A)j电流密度j=KjSp0.14102(A/mm2)(4)损耗计算1)绕组铜损Pmi=Ii2Rai(W)式中:Rai各绕组交流电阻(),Ra=KrRd,Rd导线直流电阻,Kr趋表系数,Kr=(D/2)2/(D),D圆导线直径(mm),穿透深度(mm),圆铜导线=66.1/f0.5(f:电流频率,Hz)变压器为多绕组时,总铜损为Pm=Ii2Rai(W)2)磁心损耗Pc=PcoGc式中:Pco在工作频率及工作磁通密度情况下单位质量的磁心损耗(W/kg)Gc磁心质量(kg)3)变压器总损耗Pz=PmPc(W)(5)温升计算变压器由于损耗转变成热量,使变压器温度上升,其温升数值与变

44、压器表面积ST有关ST=式中:Sp磁心面积乘积(cm4)KS表面积系数,E型磁心KS=41.3,环型磁心KS=50.95.2单极性开关电源变压器的计算设计前应确定下列基本条件:电路形式,工作频率,变换器输入最高和最低电压,输出电压电流,开关管最大导通时间,对漏感及分布电容的要求,工作环境条件等。(1)单端反激式计算1)变压器输入输出电压一次绕组输入电压幅值UP1=UiU1式中:Ui变换器输入直流电压(V)U1开关管及线路压降(V)二次绕组输出电压幅值UP2=U02U2UPi=U0iUi式中:U02U0i直流输出电压(V)U2Ui整流管及线路压降(V)2)一次绕组电感临界值(H)式中:n变压器匝数比n=tonUp1/toffUp2t

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁