《千斤顶液压缸加工机床电气控制系统设计(完整版)资料.doc》由会员分享,可在线阅读,更多相关《千斤顶液压缸加工机床电气控制系统设计(完整版)资料.doc(99页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、千斤顶液压缸加工机床电气控制系统设计(完整版)资料(可以直接使用,可编辑 优秀版资料,欢迎下载)returnD. 以上说法均不正确A、网络接口层 B、传输层 C、互联网层 D、应用层enddo14、计算机网络拓扑是通过网中结点与通信线路之间的几何关系表示网络中各实体间的_B_。【答案】C29. 在Visual FoxPro中进行参照完整性设置时,要想设置成:当更改父表中的主关键字段或候选关键字段时,自动更改所有相关子表记录中的对应值。应选择_。1、自主,通信协议,资源共享2.总线型结构、星型结构、环型结构、树型结构和混合型结构。14. 查询设计器的排序依据选项卡的作用相当于SELECT命令中的
2、_短语。A、D类 B、C类 C、B类 D、A类内容摘要在本设计中采用装在动力滑台上左,右两个动力头同时进行切削。动力头的快进、工进及快退由液压缸驱动。液压系统采用两位四通电磁阀控制,并用调整死挡铁的方法实现位置控制。主要介绍了通过PLC控制系统,设计了千斤顶液压缸加工机床电气控制,并设计了千斤顶液压缸加工机床电气控制梯形图,千斤顶液压缸加工机床控制硬件配置连线图,基于PLC的机床电气控制系统的控制电路图。关键字: 液压缸;PLC控制系统;梯形图;主电路图;硬件配置连线图目 录第1章 引言11.1 PLC的基本概念21.2 PLC的基本结构21.3 PLC的工作原理2第2章 设计思路42.1设计
3、要求42.2控制要求52.3 硬件系统设计5第3章 电路设计83.1主电路图83.2硬件配置接线图9第4章 程序设计104.1程序梯形图104.2程序指令表18设计总结22谢辞23附录24参考文献25第1章 引言本课程设计的内容是千斤顶液压缸加工机床电气控制系统的设计。其要求如下:1.控制要求:(1) 左右动力头旋转切削由电动机M1集中传动,切削时冷却泵电动机同时运转。(2) 只有在液压泵电动机M3工作,油压达到一定压力(压力继电器检测)后,才能进行其他的控制。(3) 机床即能半自动循环工作,又能对各个动作单独进行调整。(4) 要求有必要的电气连锁与保护,还有显示与安全照明。2.控制过程及原理
4、:千斤顶液压缸两端面的加工,采用装在动力滑台的左、右两动力头同时进行加工切削,机床属于双面单工位组合机床。千斤顶液压缸两端面加工机床由两个液压滑台、动力箱、固定式夹具、底座、床身和液压站等部件组成。千斤顶液压缸两端面加工时,将工件放在工作台上并加紧,当工件加紧后发出加工命令,左、右滑台开始快进,当接近加工位置时,左、右滑台变为工进进给,直到加工完成后再快退返回。至原来左、右滑台分别停止,并将工件放松取下,工作循环结束。即工作循环如下:工件定位 - 工件夹紧- 滑台入位 - 加工零件 - 滑台复位- 夹具松开。1.1 PLC的基本概念早期的可编程控制器称作可编程逻辑控制器(Programmabl
5、e Logic Controller,PLC)它主要用来代替继电器实现逻辑控制。随着技术的发展,这种采用微型计算机技术的工业控制装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程序控制器简称PLC。1.2 PLC的基本结构PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同,基本构成为: a、电源 PLC的电源在整个系统中起着十分重要的作用。一般交流电压波动+10%(+15%)范围内、,可以不采取其它措施而将PLC直接连接到交流电网上去。b、中央处理单元
6、(CPU) 中央处理单元(CPU)是PLC的控制中枢。它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行c、存储器 存放系统软件的存储器称为系统程序存储器。d、输入输出接口电路1、现场输入接口电路由光耦合电路和微机的输入接口电路,作用是
7、PLC与现场控制的接口界面的输入通道。2、现场输出接口电路由输出数据寄存器、选通电路和中断请求电路集成,作用PLC通过现场输出接口电路向现场的执行部件输出相应的控制信号。e、功能模块如计数、定位等功能模块。f、通信模块1.3 PLC的工作原理当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段。 输入采样阶段 在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶
8、段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。 用户程序执行阶段 在用户程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。
9、 即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。在程序执行的过程中如果使用立即I/O指令则可以直接存取I/O点。即使用I/O指令的话,输入过程影像寄存器的值不会被更新,程序直接从I/O模块取值,输出过程影像寄存器会被立即更新,这跟立即输入有些区别。 输出刷新阶段 当扫描用户程序结束后,PLC
10、就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。第2章 设计思路2.1设计要求本机床用于千斤顶液压缸两个端面的加工,采用装在动力滑台上的左、右两个动力头同时进行切削。动力头的快进、工进及快退由液压缸驱动。液压系统采用两位四通电磁阀控制,并用调整死挡铁的方法实现位置控制。机床的工作程序是:(1)工件定位 人工将零件装入夹具后,定位液压缸动作,工件定位。(2)工件夹紧 零件定位后,延时15s,夹紧液压缸动作使零件固定在夹具内,同时定位液压缸退出以保证滑台入位。(3)滑台入位 滑台带动动力头一起快速
11、进入加工位置。(4)加工零件 左右动力头进行两端面切削加工,动力头到达加工终点位置即停止工进,延时30s后停转,快速退回原位。(5)滑台复位 左右动力头退回原位后,滑台复位。(6)夹具松开 当滑台复位后夹具松开,取出零件。以上各种动作由电磁阀控制,电磁阀动作要求见表2-1。表2-1 电磁阀动作要求YV1YV2YV3YV4YV5定位夹紧入位工进退位复位放松注:“+”号表示电磁阀得电。2.2 控制要求控制要求如下: (1)左右动力头旋转切削由电动机M1集中传动,切削时冷却泵电动机同 时运转。 (2)只有在液压泵电动机M3工作,油压达到一定压力(压力继电器检 测)后,才能进行其他的控制。 (3)机床
12、即能半自动循环工作,又能对各个动作单独进行调整。 (4)要求有必要的电气连锁与保护,还有显示与安全照明。 (5)控制信号说明如 表2-2所示。 (6)相关参数: 动力头电动机M1:Y100L-6,1.5 kW,AC380V,4.0A。 冷却泵电动机M2:JCB-22,0.15kW,AC380V,0.43A。 液压泵电动机M3:Y801-4,0.55kW,AC380V,1.6A。 电磁阀YV1YV5:100mA,AC220V。 指示灯HL1HL8:10mA,DC24V。 表2-2 控制信号说明输入 输出 文字符号 说明 文字符号 说明SA1-1机床半自动循环控制转换开关KM1动力头M1、冷却泵M
13、2接触器SA2-1手动定位控制转换开关KM2液压泵M3接触器SA3-1手动入位控制转换开关YV11#电磁阀SA3-2手动工进控制转换开关YV22#电磁阀SA3-3手动退位控制转换开关YV33#电磁阀SB1动力头M1、冷却泵M2起动按钮YV44#电磁阀SB2动力头M1、冷却泵M2停止按钮YV55#电磁阀SB3液压泵M3起动按钮HL1动力头M1、冷却泵M2运行指示SB4液压泵M3停止按钮HL2液压泵M3运行指示KM1动力头M1、冷却泵M2运行信号HL3半自动循环工作指示KM2液压泵M3运行信号HL4定位指示FR1动力头M1、冷却泵M2过载信号 HL5入位指示KP压力继电器油压检测信号HL6工进指示
14、SQ动力头工进终点位置检测信号HL7退位指示HL8故障指示2.3 硬件系统设计由上述控制要求可知系统可采用自动工作方式,也可以采用手动工作方式.输入有18点,输出有16点,并考虑余量要求,因此系统采用24输入,16输出的PLC.所以系统属于小型控制系统,其中PLC的选型范围较宽,现选用西门子公司的S7-200,CPU226型PLC。千斤顶液压缸加工机床电气控制系统PLC输入地址分配表如下:表2-3 输入地址分配表文字符号说明输入地址KP压力继电器油压检测信号I0.0SF1动力头M1、冷却泵M2起动按钮I0.1SF2动力头M1、冷却泵M2停止按钮I0.2SF3液压泵M3起动按钮I0.3SF4液压
15、泵M3停止按钮I0.4SF1-1机床半自动循环控制转换开关I0.5SF2-1手动定位控制转换开关I0.6SF3-1手动入位控制转换开关I0.7SF3-2手动工进控制转换开关I1.0SF3-3手动退位控制转换开关I1.1QA1动力头M1、冷却泵M1故障信号I1.2QA2液压泵M3故障信号I1.3BB1动力头M1、冷却泵M2过载信号I1.4BG动力头工进终点位置检测信号I1.5BG1定位终点位置检测信号I1.6BG2入位终点位置检测信号I1.7BG3液压夹紧检测信号I2.0BG4退位终点检测信号I2.1千斤顶液压缸加工机床电气控制系统PLC输出地址分配表如下:表2-4 输出地址分配表文字符号说 明
16、输出地址PG1动力头M1、冷却泵M2运行指示Q0.0PG2液压泵M3运行指示Q0.1PG3半自动循环工作指示Q0.2PG4定位指示Q0.3PG5入位指示Q0.4PG6工进指示Q0.5PG7退位指示Q0.6PG8故障指示Q0.7MB11#电磁阀Q1.0MB22#电磁阀Q1.1MB33#电磁阀Q1.2MB44#电磁阀Q1.3MB55#电磁阀Q1.4QA1动力头M1、冷却泵M1接触器Q1.5QA2液压泵M3接触器Q1.6第3章 电路设计3.1 主电路图其中M1带动动力头,M2带动冷却泵,M3带动液压泵。KM1为M1,M2的接触器。KM2为M3的接触器。左右动力头旋转切削由电动机M1集中传动,切削时冷
17、却泵电动机M2同时运转。M3带动液压泵,只有在液压泵电动机M3工作,油压达到一定压力(压力继电器检测)后,才能进行其他的控制。主电路图如下所示。 图3-1 主电路图3.2 硬件配置接线图根据信号输入输出的类型及控制的主电路,绘制I/0连接图如图3-2所示。图3-2 I/O接线图第4章 程序设计4.1程序梯形图将零件装入夹具中,按下液压泵M3的启动按钮SB3(I0.3)启动电机M3,接触器KM2(M0.0)得电自锁,KM2闭合,然后按下循环控制按钮SA1-1(I0.5),循环工作指示灯HL3(Q1.1)和M3工作指示灯Y10亮。当压力达到一定值之后,KP(I0.0)闭合,定位转换开关SA2-1(
18、I0.6)闭合,从而使电磁阀YV1(Q0.0)得电闭合,定位指示灯HL4(Q1.2)亮,工件开始定位.零件定位之后,开始延时,延时15S之后电磁阀YV2(Q0.1)开始得电,加紧液压缸动作使零件固定在夹具里,同时定位液压缸退出以保证滑台入位.然后按下动力头M1,冷却泵M2的启动按钮KM1启动,接触器KM1得电,指示灯HL1亮,同时入位转换开关SA3-2(I0.1)闭合,电磁阀YV4,YV5得电,滑台带动动力头一起快速进入加工位置,入位指示灯HL5(Q1.3)亮.入位之后,当工进转换开关SA3-3(I1.1)得电时,电磁阀YV4(Q0.3)置位,同时工进指示灯HL6(Q1.4)亮,左右动力头开始
19、进行两端面切削加工.当动力头到达加工终点位置即停止工进,此时检测开关SQ1(I1.6)得电闭合使YV4复位断电,延时30S后复位KM1断.退位转换开关SA3-3闭合,退位电磁阀YV3(Q0.2)得电动作,同时退位指示灯HL7亮,动力头开始退回原位。 左右动力头退回原位后,滑台复位,原位检测信号开关SQ2(I1.7)动作,复位接触器Y3,使夹具松开,取出零件。根据PCL编程要求以及本设计要求,设计程序如下: 4.2 程序指令表根据梯形图,可得语句表如下: Network 1 / 网络标题/ M3启动LD I0.3O M0.0AN I0.4AN I1.3AN I1.4= M0.0Network 2
20、 LD M0.0= Q0.6= Q1.0Network 3 / 动力头动作LD I0.1O M0.1AN I0.2AN I1.2AN I1.4= M0.1Network 4 LD M0.1LPSAN M5.5= Q0.5LPP= Q0.7Network 5 / 半自动手动转换LD M0.0A I0.0LPSA I0.5= M1.0LPPAN I0.5= M2.0= Q1.1Network 6 / 手动定位LD M1.0A I0.6LPSAN M5.0= M3.0LRDA I1.6= M1.1LPP= Q1.2Network 7 / 自动定位LD M2.0LPSAN M5.1= M3.1LRDA
21、 I1.6= M2.1LPP= Q1.2Network 8 LD M1.1O M2.1AN T37TON T37, +150Network 9 LD T37O M1.2= M1.2Network 10 LD T37O M2.2= M2.2Network 11 / 手动夹紧LD M1.2LPSAN M5.7= M3.2LRDA I2.0= M1.3LPP= M5.0Network 12 / 自动夹紧LD M2.2LPSAN M6.1= M3.3LRDA I2.0= M2.3LPP= M5.1Network 13 / 手动入位LD M1.3A I0.7LPSAN M5.4= M3.4LRDAN M
22、5.2= M3.5LRDA I1.7= M1.4LPP= Q1.3Network 14 / 自动入位LD M2.3LPSAN M5.4= M3.6LRDAN M5.3= M3.7LRDA I1.7= M2.4LPP= Q1.3Network 15 / 手动工进LD M1.4A I1.0LPSAN M5.4= M3.4LRDA I1.5= M1.5LRD= M5.2LPP= Q1.4Network 16 / 自动工进LD M2.4LPSAN M5.4= M3.6LRDA I1.5= M2.5LRD= M5.3LPP= Q1.4Network 17 / 工进停止LD M1.5O M2.5= M5.
23、4Network 18 LD M1.5O M2.5AN T38TON T38, +300Network 19 LD T38O M1.6= M1.6Network 20 LD T38O M2.6= M2.6Network 21 / 动力头停转(手动)LD M1.6= M5.5= M1.7Network 22 / 手动退位LD M1.7A I1.1LPSAN M3.4= M4.0LRDA I2.1= M7.0LPP= Q1.5Network 23 / 夹紧缸松开LD M7.0= M5.7Network 24 / 动力头停转(自动)LD M2.6= M5.5= M2.7Network 25 / 自动
24、退位LD M2.7LPSAN M3.4= M4.1LRDA I2.1= M7.1LPP= Q1.5Network 26 LD M7.0= M6.1Network 27 / 电磁阀动作LD M3.2O M3.3= Q0.1Network 28 LD M3.4O M3.6= Q0.3Network 29 LD M3.5O M3.7= Q0.4Network 30 LD M4.0O M4.1= Q0.2Network 31 / 故障指示LD I1.2O I1.3O I1.4= Q0.6设计总结通过此次课程设计,使我更加扎实的掌握了有关PLC应用方面的知识,在设计过程中尤其是自己动手编制程序时,遇到了
25、很多困难,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我掌握的知识不再是纸上谈兵,而是学以致用。同时,这次课程设计让我感受到了我对所学习的内容是多么的不熟练,在设计过程中总是需要翻书,还总是会出现问题,同时这些问题也提醒了我那些地方没学好,加深了对这部分知识的印象。课程设计不仅仅是一门专业课,使我学到很多专业知识以及提升了专业技能上,同时又是一门提升自我综合能力的课程,给了我莫大的发展空间,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高;更重要的是,在课程设计中,我们学会了很多学习的
26、方法,而这些都将为日后做准备,会使我们终身都受益匪浅。面对社会的挑战,只有不断的学习、实践,再学习、再实践,才能在最大程度上发掘自己。这对于我们的将来也有很大的帮助。以后,不管有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。谢辞本次课程设计过程,我首先要感谢我的指导老师薛东彬老师,他平日里工作繁多,但在我做课程设计的每个阶段都给予了我悉心的指导,并且细心的找出我设计中的错误,然后引导我走向正确的道路。其次要感谢本次课程设计过程中我们班同学给予的帮助,没有他们的帮助,我不会如此顺利得完成本次课程设计,在此,向他们致以真诚的感谢。老师和同学们所体现出的治学严谨和科学研究的精神也是
27、我学习的榜样,将积极的影响我今后的学习和工作。附录附录A:主电路图附录B:I/O接线图附录C:PLC电气布置图附录D:PLC电气接线图参考文献1 王宗才. 机电传动与控制. 北京: 电子工业出版社. 2021.3 胡学林. 电气控制及PLC. 北京:冶金工业出版社, 1997.4 廖常初. PLC编程及应用. 北京:机械出版社,2002.6 马光.全自动洗衣机中的传感器J.北京:家用电器,1999.8 刘子林.电机与电气控制M.北京:电子工业出版社,2003.9 程周.电气控制与PLC原理及应用M.北京:电子工业出版社,2003.10蒋金周.全自动洗衣机的PC智能控制J.机电一体化,2004.
28、【答案】Aset talk offif found()A、以太网 B、快速以太网子程序scx2.prgC、在通信实体之间传送以帧为单位的数据A. replace all 总分 with 语文+数学+英语【答案】DELETE FOR SUBSTR(分类号,1,1)=”I”A. CREATE SQL VIEW B. MODIFY VIEW991301 网页设计河南工业职业技术学院课 程 设 计温度监测与控制系统系别:机电工程系专业名称:机电一体化学生姓名:张奇美学号:0202180432指 导 教 师 姓 名:田林红完成日期 2021年 3 月 30 日温度监测与控制系统摘要温度是日常生活中无时不
29、在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更
30、加完整,更加灵活。目录1 前言11.2 温度控制系统的目的11.3 温度控制系统完成的功能12 总体设计方案22.1 方案一22.2 方案二23 DS18B20温度传感器简介73.1 DS18B20的工作原理73.2 DS18B20工作时序73.2 ROM操作命令93.2 DS18B20的测温原理93.2.1DS18B20的测温原理:93.2.2 DS18B20的测温流程114 单片机接口设计124.1 设计原则124.2 引脚连接12晶振电路12串口引脚12其它引脚135 系统整体设计145.1 系统硬件电路设计14主板电路设计14各部分电路145.2 系统软件设计16系统软件设计整体思路1
31、6系统程序流图175.3 调试21附录24参考文献311 前言1.1 温度控制系统设计的背景、发展历史及意义 随着社会的发展,科技的进步,以及测温仪器在各个领域的应用,智能化已是现代温度控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状
32、态的最重要的参数之一。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。因此,各行各业对温度控制的要求都越来越高。可见,温度的测量和控制是非常重要的。单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。随着温度控制器应用范围的日益广泛和多样,各种适用于不同场合的智能温度控制器应运而生。1.2 温度控制系统的目的本设计的内容是温度测试控
33、制系统,控制对象是温度。温度控制在日常生活及工业领域应用相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制。而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。1.3 温度控制系统完成的功能本设计是对温度进行48点实时监测并对其进行控制,设计的温度控制系统实现了基本的温度控制功能:当温度低于设定下限0温度时,系统自动启动加热继电器加温,使温度上升,同时绿灯亮。当温度上升到下限0温度以上时,停止加温;当温度高于设定上限
34、50温度时,系统自动启动风扇降温,使温度下降,同时红灯亮。当温度下降到上限温度以下时,停止降温。温度在上下限温度之间时,执行机构不执行,从而实现将温度控制在050。三个数码管即时显示温度,精确到小数点一位。2 总体设计方案2.1 方案一测温电路的设计,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。2.2 方案二考虑使用温度传感器,结合单片机电路设计,采用一只DS18B20温度传感器,直接读取被测温度值,之后进行转换,依次完
35、成设计要求。比较以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计容易实现,故实际设计中拟采用方案二。在本系统的电路设计方框图如图1.1所示,它由三部分组成:控制部分主芯片采用单片机AT89S51;显示部分采用3位LED数码管以动态扫描方式实现温度显示;温度采集部分采用DS18B20温度传感器。加热继电器电风扇继电器单 片 机DS18B20LED显示指示灯 图21 温度计电路总体设计方案1. 控制部分单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用,系统应用三节电池供电。2. 显示部分显示电路采用3位共阳
36、LED数码管,从P0口送数,P2口扫描。3. 温度采集部分DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温。这一部分主要完成对温度信号的采集和转换工作,由DS18B20数字温度传感器及其与单片机的接口部分组成。数字温度传感器DS18B20把采集到的温度通过数据引脚传到单片机的P1.0口,单片机接受温度并存储。将48个DS18B20传感器并联在惟一的三线上,并通过一线总线方式将测量信号通过时序控制送入单片机,即可实现48点温度监测,为下一步的显示工作提供条件。 图2-2多路温度传感器采集模块此部分只用到DS
37、18B20和单片机,硬件很简单。1) DS18B20的性能特点如下9:1) 独特的单线接口仅需要一个端口引脚进行通信;2) 多个DS18B20可以并联在惟一的三线上,实现多点组网功能;3) 无须外部器件;4) 可通过数据线供电,电压范围为3.05.5V;5) 零待机功耗;6) 温度以3位数字显示;7) 用户可定义报警设置;8) 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;9) 负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 (2) DS18B20的内部结构DS18B20采用3脚PR35封装,如图1.2所示;DS18B20的内部结构,如图3所示。图23 D
38、S18B20封装(3) DS18B20内部结构主要由四部分组成5:1) 64位光刻ROM。开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前56位的CRC校验码,这也是多个DS18B20可以采用一线进行通信的原因10。64位闪速ROM的结构如下.表21 ROM结构8b检验CRC48b序列号8b工厂代码(10H) MSB LSB MSB LSB MSB LSB图24 DS18B20内部结构2) 非挥发的温度报警触发器TH和TL,可通过软件写入用户报警上下限值。3) 高速暂存存储,可以设置DS18B20温度转换的精度。DS18B20温度传感器的内部存储器还包括一个高速暂
39、存RAM和一个非易失性的可电擦除的E2PRAM。高速暂存RAM的结构为8字节的存储器,结构如图1.3所示。头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。它的内部存储器结构和字节定义如图1.3所示。低5位一直为,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式。 表22 DS18B20内部存储器结构Byte0温度测量值LSB(50H)Byte1温度测量值MSB(50H)E2PROMByte2TH高温寄存器-
40、TH高温寄存器Byte3TL低温寄存器-TL 低温寄存器Byte4配位寄存器-配位寄存器Byte5预留(FFH)Byte6预留(0CH)Byte7预留(IOH)Byte8循环冗余码校验(CRC)DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率,如图1.4。图23 DS18B20字节定义TM R1R0 1 1 1 1 1由表1.1可见,分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625LSB形式表示。当符号位S0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。 表1.2是一部分温度值对应的二进制温度数据6。表24 DS18B20温度转