《最新的安徽高考高三数学必考知识点2023.docx》由会员分享,可在线阅读,更多相关《最新的安徽高考高三数学必考知识点2023.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、最新的安徽高考高三数学必考知识点2023高三数学必考知识点不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。不等式的判定:常见的不等号有“”“b”或“a不等号的开口所对的数较大,不等号的尖头所对的数较小;在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。高考不等式知识点不等式分类:不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“”“”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“”(大于等于符号)“”(小于等于符号)
2、连接的不等式称为非严格不等式,或称广义不等式。通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(_,y,z)G(_,y,z)(其中不等号也可以为中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。高考数学必考知识点变化前的点坐标(_,y)坐标变化变化后的点坐标图形变化平移横坐标不变,纵坐标加上(或减去)n(n0)个单位长度(_,y+n)或(_,y-n)图形向上(或向下)平移了n个单位长度纵坐标不变,横坐标加上(或减去)n(n0)个单位长度(_+n,y)或(_-n,y)图形向右(或向左)平移了n个单位长度伸长横坐标不变,纵坐标扩大n(
3、n1)倍(_,ny)图形被纵向拉长为原来的n倍纵坐标不变,横坐标扩大n(n1)倍(n_,y)图形被横向拉长为原来的n倍压缩横坐标不变,纵坐标缩小n(n1)倍(_,)图形被纵向缩短为原来的纵坐标不变,横坐标缩小n(n1)倍(,y)图形被横向缩短为原来的放大横纵坐标同时扩大n(n1)倍(n_,ny)图形变为原来的n2倍缩小横纵坐标同时缩小n(n1)倍(,)图形变为原来的78、求与几何图形联系的特殊点的坐标,往往是向_轴或y轴引垂线,转化为求线段的长,再根据点所在的象限,醒上相应的符号。求坐标分两种情况:(1)求交点,如直线与直线的交点;(2)求距离,再将距离换算成坐标,通常作_轴或y轴的垂线,再解
4、直角三角形。数学概率1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个
5、常数记作P(A),称为事件A的概率。(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若AB为不可能事件,即AB=,那么称事件A与事件B互斥;(3)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加
6、法公式:P(AB)=P(A)+P(B);若事件A与B为对立事件,则AB为必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0P(A)1;2)当事件A与B互斥时,满足加法公式:P(AB)=P(A)+P(B);3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。3.2.13.2.2古典概型及随机数的产生1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。