《电力电子技术课程设计基于sg3524芯片的逆变电源设计与matlab仿真大学论文.doc》由会员分享,可在线阅读,更多相关《电力电子技术课程设计基于sg3524芯片的逆变电源设计与matlab仿真大学论文.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 本科电力电子技术课程设计说明书题目:基于SG3524芯片的逆变电源设计与MATLAB仿真 (控制电路)学 院:机电工程学院 专 业:农业电气化与自动化 姓 名: 学 号: 指导教师: 职 称:副教授设计完成日期:二一五年一月1.1 电力电子简介4 1.2课设的目的41.3课程设计要求41.4课程设计的主要内容与技术参数5二、单相电压型逆变电路72.1全桥逆变电路7三、器件的选择83.1SG3524内部结构图 3.2 SG3524引脚功能 3.3 SG3524引脚图 四、 控制电路10 五、 心得体会 10一、 前言1.1电力电子简介电力电子技术又称为功率电子技术,他是用于电能变换和功率恐控制
2、的电子 技术。电力电子技术示弱电控制强电的方法和手段,是当代高兴技术发展的重要 内容,也是支持电力系统技术革命和技术革命的发展的重要基础,并节能降耗、 增产节约提高生产效能的重要技术手段。微电子技术、计算机技术以及大功率电 力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。电力电子器件是电力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十时间九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁
3、、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。 电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。1.2课设的目的1)通过对单相桥式PWM逆变电路的设计,掌握单相桥式PWM逆变电路的工作原理,综合运用所学知识,进行单项桥式全控整流电路和系统设计的能力。2)了解与熟悉单相桥式PWM逆变电路的控制方法。3)理解和掌握单相桥式PWM逆变电路及系统的
4、主电路、控制电路、保护电路的设计方法,掌握元器件的选择计算方法。1.3课程设计要求1、输入直流电源:24V10%;2、输出交流电压:220V10%;3、控制电路芯片为SG3524;4、过流保护电路。1.4课程设计的主要内容与技术参数 1、主电路设计。2、通过计算选择全控器件的具体型号。3、确定变压器变比及容量。4、控制电路芯片分析及接线使用。5、绘制相关电路图。6、MATLAB电路仿真,获得输出电压波形;7、完成设计说明书。 课程设计任务书论文题目基于SG3524芯片的逆变电源设计与MATLAB仿真学院机电专业农业电气化与自动化班级12级农电班课程设计的要求 1、输入直流电源:24V10% ;
5、2、输出交流电压:220V10%;3、控制电路芯片为SG3524; 4、过流保护电路。课程设计的主要内容与技术参数 1、主电路设计。2、通过计算选择全控器件的具体型号。3、确定变压器变比及容量。4、控制电路芯片分析及接线使用。5、绘制相关电路图。6、MATLAB电路仿真,获得输出电压波形;7、完成设计说明书。课程设计工作计划通过学习,查阅收集参考资料和文献;进行方案论证;做主电路设计;选择器件;确定变压器变比及容量;确定滤波电抗器;芯片分析接线;搭建仿真电路模拟输出波形;总结并撰写说明书;准备答辩。接受任务日期 201 年 月 日 要求完成日期 201 年 月 日学 生 (签名) 年 月 日指
6、 导 教 师 (签名) 年 月 日院长(主任) (签名) 年 月 日二、单相电压型逆变电路2.1全桥逆变电路电压型全桥逆变电路的原理图如图2-1 a所示,它共有四个桥臂,可以看成由两个半桥电路组合而成。把桥臂1和4作为一对,桥臂2和3作为另一对,成对的两个桥臂同时导通,两对交替各导通180度。其输出电压u0的波形和图2-1b的半桥电路的波形u0形状相同,也会矩形波,但其幅值高出一倍,Um=Ud。在直流电压和负载都相同的情况下,其输出电流i0的波形当然也和图2-1b中的i0形状相同,仅幅值增加一倍。图一中的VD1、V1、VD2、V2相继导通的区间,分别对应于图一种的VD1和VD4,、V1和V4、
7、VD2和VD3、V2和V3相继导通的区间。关于无功能量的交换,对于半桥逆变电路的分析也完全适用于全桥逆变电路。在阻感负载时,还可以采用移相的方式来调节逆变电路的输出电压,这种方式称为移相调压。移相调压实际上就是调节输出电压脉冲的宽度。在图2-1a的单相全桥逆变电路中,各IGBT的栅极信号仍为180度正偏,180度反偏,并且V1和V2的栅极信号互补,V3和V4的栅极信号互补,但V3的基极信号不是比V1落后180度,而是只落后q(0 q180度)。也就是说,V3、V4的栅极信号不是分别和V2、V1的栅极信号同相位,而是前移了180度q。这样,输出电压u0就不再是正负各为180度的脉冲,而是正负各为
8、q 脉冲,各IGBT的栅极信号uG1uG4及输出电压u0、输出电流i0的波形如图2-1b所示。下面对其工作过程进行具体分析。设在t1时刻前V1和V4导通,输出电压u0为Ud,t1时刻V3和V4栅极信号反向,V4截止,而因负载电感中的电流i0不能突变,V3不能立刻导通,VD3导通徐柳。因为V1和VD3同时导通,所以输出电压为零。到t2时刻V1和VD2栅极信号反向,V1截止,而V2不能立刻导通,VD2导通续流,和VD3构成电流通道,输出电压为Ud。到负载电流过零并开始反向时,VD2和VD3截止,V2和V3开始导通,u0仍为Ud。t3时刻V3和V4栅极信号再次反向,V3截止,而V4不能立刻导通,VD
9、4导通续流,u0再次为零。以后的过程和前面类似。这样,输出电压u0的正负脉冲宽度就各位q。改变q,就可以调节输出电压。在纯电阻负载时,采用上述移相方法也可以得到相同的结果,只是VD1VD4不再导通,不起续流作用。在u0为零期间,四个桥臂均不导通,负载也没有电流。显然,上述移相调压方式并不适用于半桥逆变电路。不过在纯电阻负载时,仍可采用改变正负脉冲宽度的方法来调节半桥逆变电路的输出电压。这是,上下两桥臂的栅极信号不再是各180度正偏、180度反偏并且互补,而是正偏的宽度为q、反偏的宽度为180度q,二者相位差为180度。这是输出电压u0也是振幅脉冲的宽度各为q。图2-1:单项全桥逆变电路的移相调
10、压方式三、 器件的选择 3.1SG3524内部结构图3.2 SG3524引脚功能目前国内外生产的PWM型和PFM(脉频调制)型开关集成控制器已达上百种,其中PWM型集成控制器以SG3524较为流行, 它是美国硅通用公司(Silicon General)生产的双端输出式脉宽调制芯片,包括了所有无电源变压器开关电源所要求的基本功能,如控制、保护、取样放大等功能,使用方便灵活,同时在制造上采用常规的平面工艺。SG3524可为脉宽调制式推挽、桥式、单端及串联型SMPS(固定频率开关电源)提供全部控制电路系统的控制单元。由它构成的PWM型开关电源的工作频率可达100kHz,适宜构成100500W中功率推
11、挽输出式开关电源。 SG3524采用是定频PWM电路,DIP16型封装。引脚号引脚名称引脚功能1Inv.input误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。2Noninv.input误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。3Sync振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。4OSC.Output振荡器输出端5Ct振荡器定时电容接入端。6Rt振荡器定时电阻接入端
12、。7Discharge振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。8Soft-Start软启动电容接入端。该端通常接一只5 的软启动电容9CompensationPWM比较器补偿信号输入端。在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。10Shutdown外部关断信号输入端。该端接高电平时控制器输出被禁止。该端可与保护电路相连,以实现故障保护。11Output A输出端A12Ground信号地13Vc输出级偏置电压接入端。14Output B输出端B15Vcc偏置电源接入端。16Vref基准电源输出端。该端可输出一温度稳定性极好的基准电压
13、。 特点如下: (1) 工作电压范围宽:835V。 (2) 5.1(11.0%)V微调基准电源。 (3) 振荡器工作频率范围宽:100Hz400KHz. (4) 具有振荡器外部同步功能。 (5) 死区时间可调。(6) 内置软启动电路。 (7) 具有输入欠电压锁定功能。 (8) 具有P3.3 SG3524引脚图四、 控制电路及保护电路图 五 心得体会 在这次的电力电子课程设计中,我遇见了各种各样的困难。通过查阅资料,向老师和同学请教才解决了部分的问题。这让我了解到了自己在这门课程上的不足之处和薄弱环节。另外课本知识和实践设计还是有很大的差别,这更加让我理解了真理出自实践这句名言的可贵之处。 以后我会更加注重将理论知识活运用于实践,为自己的专业甚至就业打好坚实的基础。感谢在这次课程设计中,帮助我的同学和老师们。六 参考文献(1)黄俊,王兆安.电力电子变流技术M.北京:机械工业出版社,1996.(2)何仰赞,温增银.电力系统分析M.武汉:华中科技大学出版社,2002.(3)王兆安,刘进军.电力电子技术M.北京:机械工业出版社,2009.(4)内蒙古电力技术,2010.