《决策支持系统概述.doc》由会员分享,可在线阅读,更多相关《决策支持系统概述.doc(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 第1章 决策支持系统概述 数据:记载下来的事实,客观属性的值 信息:构成一定含义的一组数据 系统:由若干相互联系相互制约的元素结合在一起,并具有特定功能的有机整体。 系统的组成:1、 系统由各元素或子系统组成2、 至少包含两个以上的元素3、 各元素之间相互联系或相互制约4、 具有目的性5、 适应环境的变化 数据处理系统:是对大量数据进行收集、组织、存储、加工与传播的总和 数据处理系统的特征:1、 数据量大;2、没有特别复杂的运算;3、时效性强 管理信息系统MIS:运用系统管理的理论方法,以计算机网络和现代通信技术为手段,对信息进行收集、组织、存储、加工、传播和使用的人机系统。 管理信息系统的
2、基本组成:管理业务应用系统、数据库系统 管理信息系统特点:1、以数据库系统为基础;2、数据录入;3、数据传输;4、数据存储;5、数据查询;6、数据统计;7、指标计算决策支持系统:以管理科学、运筹学、行为科学、控制论为基础,以计算机技术、模拟技术、信息技术为手段,面向半结构化的决策问题,支持决策活动的具有智能作用的人机系统。 决策支持系统主要特征:1、 关注上层管理人员经常遇到的结构化程度不高、规化不明确的问题2、 把模拟或分析技术与传统的数据存取和检索技术结合起来3、 易于非计算机专业的人员,以交互会话的方式使用4、 强调对环境与用户决策方法改变的适应性和灵活性5、 提供决策的良好效果 DSS
3、的功能:1、 管理并提供外部信息2、 收集、管理并提供部信息3、 收集、管理并提供反馈信息4、 存储和管理数学模型5、 修改和添加数据、模型、方法6、 加工、汇总、分析、预测数据、7、 具有人机会话和图像输出功能以满足数据查询需求8、 提供良好的数据通信功能9、 合理的加工速度和响应时间 决策支持系统的形成过程1、 科学计算为管理信息系统奠定了算法基础2、 运筹学的发展为模型辅助决策奠定了模型基础3、 管理信息系统4、 模型辅助决策系统5、 决策支持系统 分布式决策支持系统DDSS:研究由多个物理位置上分离的决策体如何并发计算、协调一致地求解问题 DDSS分为:同步系统:有时间压力下参与者之间
4、同时同地和同时异地的信息交换。异步系统:无时间压力下参与者异时异地对信息的调查、核实,并通过对在线研讨产生的不连贯信息进行提取整合,形成系统完整的结论。 与DSS集成的人工智能技术主要有:1、自然语言处理和语音处理技术;2、专家系统ES;3、人工神经网络ANN智能决策的新技术1、计算智能(通过对“数值知识”进行数值计算,来实现某些智能行为,与传统的以符号推演为特征的符号智能互相补充)2、Agent技术3、商业智能技术(从商业数据中提取信息和知识,并根据这些做出商业决策) 决策支持的主要方式1、 数据辅助决策2、 模型辅助决策3、 知识辅助决策4、 方案辅助决策 决策支持系统与管理信息系统的区别
5、联系:DSS是从MIS的基础上发展起来的,都是以数据库为基础,都需要进行数据处理,都能在不同程度上为用户提供辅助决策信息区别1、DSS支持半结构化,MIS支持结构化决策2、 DSS可处理不确定性问题,MIS处理确定性问题3、 DSS具有模型管理与服务功能,MIS只涉与处理单模型问题4、 DSS具有强大的人机交互功能,MIS交互功能较弱5、 DSS一般只使用数据,MIS经常维护数据6、 DSS支持方案生成与评估,MIS不具备此功能7、 DSS为模型驱动,MIS是数据驱动8、 DSS面向高层管理人员,MIS面向中低层管理人员第2章 决策、决策过程和决策支持决策:为了确定未来某个行动目标,根据决策者
6、的经验,在具有一定信息的基础之上,借助科学的方法,从两个以上的可行方案中选择最优方案的分析判断过程。决策的涵:1、决策目标;2、多个可行方案;3、决策实施;4、目标优化决策的特征:1、目的性2、超前性3、创造性4、管理性决策的分类:按性质分(结构化、半结构化、非结构化)按影响围分(战略、战术、执行)按决策环境分(确定型、风险型、非确定型)决策过程:人们为实现一定目标而制定行动方案,并准备实施的过程,此过程也是一个提出问题、分析问题、解决问题的过程。决策分三个阶段:1、情报收集;2、方案设计;3、方案评估与选择决策过程示意图:(看书上图)科学决策包括:1、科学的决策程序;2、科学的决策技术;3、
7、用科学的思维方法做出决断科学决策的特点:1、有科学的决策体系和运作机制;2、有科学的决策程序;3、重视参谋作用;4、运用科学技术和科学方法。科学决策原则:1、信息化;2、定量分析与定性分析相结合;3、对比优化;4、反馈;5、复杂问题群体决策科学决策流程:1、提出问题;2、确定目标;3、价值准则;4、拟定方案;5、分析评估;6、选择方案;7、实验验证;8、普遍实施1、结构化决策(指问题的本质和结构非常明确,且经常重复发生的决策问题,解决这些问题的步骤是已知的,可以采用格式化的书面指示留给用户或计算机处理)2、非结构化(问题的本质和结构复杂难以理解,无法用固定决策程序来解决)3、半结构化(介于结构
8、化和非结构化之间)决策支持系统的三部件结构:对话部件,模型部件,数据部件三部件结构图(看书上图)决策支持系统的三系统结构语言系统LS,知识系统KS,问题处理系统PPS三系统结构图(看书上图)三部件和三系统结构的比较三部件(优点:明确了三部件之间的关系便于和其他系统的区别。缺点:没有突出DSS的问题处理特性没有突出语言系统)三系统(优点:突出了问题处理系统的重要性明确了语言系统的重要性。缺点:忽略了数据库系统、模型库系统的关系不适合与其他系统的区别)模型库和方法库的关系1、一个模型可以有多个方法;2、多个方法组成一个模型;3、模型是由方法实现的4、模型和方法的表现形式不同5、模型和方法是同一个问
9、题的两个侧面增强型三部件结构(看书上图)四库系统(看书上图)智能决策支持系统IDSS:是将人工智能技术引入决策支持系统而形成的一种具有人工智能行为的信息系统。IDSS的分层1、应用层(面向IDSS的使用者)2、控制协调层(面向IDSS的总设计师)3、基本结构层(面向专业程序设计人员)IDSS是专家系统ES与决策支持系统DSS的结合用户问题处理与人机交互系统数据库管理系统模型库管理系统数据库知识库模型库知识库管理系统推理机什么是I3DSS:是智能化、交互性、集成化决策支持系统的简称,是面向决策者、决策过程的综合型决策支持系统的一个功能框架,也称综合决策支持系统。综合决策支持系统I3DSS的结构图
10、(看书上图)I3DSS的体系结构1、第一个主体是数据库系统、方法库系统和模型库系统的结合,为决策问题提供定量分析的辅助决策信息,是定量分析基础。2、第二个主体是数据仓库、OLAP,它从数据仓库中提取数据和信息,这些东西反映了大量数据的在本质,是定量分析的关键。3、第三个主体是专家系统和数据挖掘的结合,数据挖掘从数据库和数据仓库挖掘知识,放入专家系统中,并由知识推理达到定性分析的辅助决策。I3DSS的特点1、集成化2、交互性3、智能化基于服务的决策支持系统S-DSS的分层:资源层、服务层、应用支撑层、应用层基于服务的决策支持系统S-DSS的特点:1、有较强的可扩展性;2、兼容性好;3、应用领域宽
11、说明模型库、知识库、数据库三者的两两之间的接口问题(找答案)如何集成模型库系统、知识库系统、数据库系统为统一整体(找答案)第三章 基于数据的决策支持技术数据仓库:数据仓库是面向主题的、集成的、稳定的、随时间变化的数据集合,用于支持决策制定过程。数据仓库特点:面向主题集成稳定随时间变化数据集市:是指具有特定应用的数据仓库,主要针对某个具有战略意义的应用或者具体部门级的应用。数据库与数据仓库的区别:数据库数据仓库定位事务处理数据分析设计E-R模型,面向应用星型模型,面向主题数据当前的历史的汇总细节的汇总的视图关系的多维的存取读/写读访问记录少量记录记录集合规模MB到GBTB单位简单复杂多维数据模型
12、:以分析和描述数据的多维特征为目标,将客观世界划分为维度和度量,最终形成多维逻辑视图多维数据模型相关概念:维、维级别、维成员、度量、多维数组、数据单元 维:人们观察数据的特定角度 维级别:人们观察数据的特定角度还存在不同的细节 维成员:维的一个取值 度量:数据的实际意义,即描述数据“是什么” 多维数组:可以表示为(维1维n,度量1度量m) 数据单元:多维数组的取值数据仓库中的数据分为四个级别:早期细节数据、当前细节数据、轻度综合数据、高度综合数据粒度:粒度是对数据仓库中数据的综合程度高低的度量。粒度越小,细节程度越高。元数据:关于数据的数据元数据的分类: 技术元数据(关于数据仓库系统技术细节的
13、数据) 业务元数据(从业务角度描述数据仓库的数据)元数据的系统管理功能: 1、描述哪些数据在数据仓库中; 2、定义要进入数据仓库的数据和数据仓库中产生的数据; 3、记录数据抽取工作时间安排; 4、记录并检测系统数据一致性的要求和执行情况; 5、衡量数据质量。数据仓库的数据组织方式: 1、虚拟存储方式 2、基于关系表的存储方式( 3、多维数据库存储方式数据仓库中主要有几类表? 事实表、维表星型模式事实表和维表联系在一起形成“星型模式”的数据结构雪花模式“星型模式”的维表按其层次结构用多个维表分开表示。数据仓库的基本体系结构: 数据源,数据ETL,存储与管理,数据的表现ETL处理过程描述: 抽取:
14、是数据进入仓库的入口。 转换:根据数据仓库的要求,进行数据转换等处理,确保来自不同系统、不同格式的数据的一致性和完整性,并按要求装入数据仓库。 加载:将转换后的数据加载到数据仓库中。数据清洗:指发现并纠正数据文件中可识别的错误,包括检查数据的一致性,处理无效值和缺失值等。数据质量问题可分为:单数据源模式层问题,单数据源实例层问题,多数据源模式层问题,多数据源实例层问题。数据清洗分类:1、手工实现方式;2、通过专门编写的应用程序;3、某类特定领域的问题;4、与特定应用领域无关。数据清洗分成哪几个阶段?1、数据分析2、定义清洗3、执行清洗异构数据集成主要处理多数据源的异构问题。异构性分为哪几个层次
15、?系统级异构:指不同的主机语法级异构:指数据类型结构级异构:指数据结构语义级异构:指词汇的语义区别数据仓库设计的方法分为:自顶向下、自底向上、二者混合数据仓库的设计过程:1、选取待建模的分析主题2、选取数据粒度3、选取用于每个事实表记录的维4、选取将记录在事实表中的度量。联机分析处理OLAP是使分析、管理或执行人员能够从多角度对企业数据进行快速、一致、交互地存取,从而获得对数据更加深入了解的一类软件技术。OLAP特点快速性、可分析性、多维性、信息性OLAP分析:指对以多维形式组织起来的数据进行切片、切块、上钻、下钻和旋转等分析,使用户能从多角度观察数据仓库中的数据,从而深入了解数据的信息和涵。
16、OLAP基本分析操作 1、切片:在多维数组的某一维上选定一维成员 2、切块:在多维数组的某一维上选定某一区间的维成员 3、旋转:改变报告或页面的显示的维方向 4、上钻:通过归约,将概念向上聚集。 5、下钻:由不太详细的数据分解到更详细的数据。OLAP体系结构:C/S模式,B/S模式OLAP存储格式可分为:关系OLAP(ROLAP,基于关系数据库的OLAP实现),多维OLAP(MOLAP,基于多维数据组织的OLAP实现),混合型OLAP(HOLAP,基于混合数据组织的OLAP实现)MOLAP与ROLAP的比较 1、存储结构比较:MOLAP查询速度快,结构清晰明了 2、数据更新比较:ROLAP灵活
17、性好,对数据变化适应性强 3、性能比较:MOLAP在存取速度上占优势,但在预计算、响应时间上的优势是通过牺牲存储空间换来的。数据挖掘的定义:就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐藏在其中的,但又潜在有用的信息和知识的过程。数据挖掘的分类:1、关联规则挖掘(发现数据库中一组对象之间的关联)2、分类和预测(分类是对数据集的分析,找出并区分数据类,以便使用模型预测未知类型的数据) 分类预测模型的建立采用的技术: 人工神经元网络、决策树方法、规则推理方法3、聚类挖掘(利用计算机技术进行自动分类) 聚类技术主要分为: 划分聚类、层次聚类、密度性聚类和网格型聚类4、偏差检测(对历史
18、数据的异常记录进行检测)5、演变分析(描述行为随时间变化的对象的规律和趋势)数据挖掘和联机分析的异同: OLAP:1、验证型分析工具,由用户驱动 2、事先要对用户需求有深入的了解 3、不同的视图得到的结果可能不同,容易产生误导 DM:1、挖掘型分析工具,由数据驱动 2、计算机将处于长时间工作,结果中可能产生很多无用信息 3、挖掘出的信息可能用户不知道能做什么用联机分析挖掘OLAM的产生背景与典型模式:OLAP和DM技术在决策分析中存在极为吻合的互补性,因此促成了联机分析挖掘。 典型模式1、先进行立方体计算,再进行数据挖掘 2、先进行数据挖掘,再利用立方体计算进行深入分析 3、立方体计算与数据挖
19、掘同时进行 4、回溯操作经理信息系统EIS定义:是一种以支持高层管理和决策人员进行日常管理和决策工作的计算机信息系统,能为高层管理者提供决策支持,提高工作效率,增强管理与决策能力。EIS的要求:数据的外部化与智能化、结构的柔性化和灵活化、系统的协作化和分布化EIS的功能:1、办公支持是基本部分2、信息支持是根本功能3、决策支持注重决策的可行性评价4、思维支持强调决策过程中的思维过程EIS的建设中集成数据仓库、联机分析和数据挖掘的优势:1、数据仓库技术改进了数据组织问题2、联机分析、数据挖掘技术提高了分析能力第四章 基于知识的决策支持技术知识:是以各种不同方式把多个信息关联在一起的信息结构,是人
20、们对客观事物与其规律的认识。数据、信息和知识的区别:数据信息知识来源对事件的基本记录由大量数据组成由大量信息组成形式无意义有一定意义形成决策的综合性知识抽象性简单直观有一定抽象性复杂抽象编码化程度可编码较难编码难以编码知识的分类:按作用围分:常识性知识和领域性知识按作用与表示分:事实性知识、过程性知识和控制性知识按作用层次分:对象级知识、元级知识按确定性分:确定性、不确定性知识表示:是知识的符号化过程,即用某种约定的形式结构描述知识,并转化成计算机能够存储、处理和利用的形式。知识表示法分为:符号表示法:(用各种符号,以不同方式和次序组合起来表示知识的方法)连接机制表示法:(运用神经网络技术,把
21、各物理对象以不同方式和次序连接起来,并在其间传递和加工信息的方法)知识表示形式:谓词逻辑、产生式规则、语义网络、框架、剧本、过程性知识(属于符号表示法)神经网络(属于连接机制表示法)形式逻辑:研究人的思维形式与其规律的科学。形式逻辑主要研究:形成概念、做出判断、进行推理概念:反映事物的特有属性和它的取值判断:对概念的肯定或否定推理:从已知事实出发,通过运用已掌握的知识,找出其中蕴含的事实,或归纳出新的事实。推理有哪几种:1、演绎推理(从一般现象到特殊现象)2、归纳推理(从特殊现象到一般现象)3、类比推理(从特殊现象到特殊现象)三种推理的关系:1、演绎推理的结论没有超出已知的知识围,而归纳推理和
22、类比推理的结论超出了已知的知识围。2、演绎推理只要前提为真,结论一定为真;归纳推理和类比推理的前提和结论不一定有必然联系,结论未必可靠。基本神经元模型的基本要素:一组连接、一个求和单元、一个非线性激活函数(书P103,决策支持系统教程P79)语义网络的推理分为:(书P101)闭式推理(着眼寻找几个概念之间的在联系)开式推理(针对某个或某些概念提出问题,通过推理来回答以下问题)专家系统:应用于某一专门领域、拥有该领域相当数量的专家级知识,能模拟专家的思维、达到专家级水平,像专家一样解决困难和复杂的实际问题的计算机系统。专家系统的特点:1、具有丰富的经验和知识2、能进行符号处理3、能根据不确定的知
23、识进行推理4、具有元知识5、知识的独立性6、推理不是固定形式专家系统的功能:1、存储问题求解所需的知识2、存储具体问题求解的初始数据和推理过程中的各种信息3、利用已有知识进行问题求解,并控制和协调系统运行4、能够对推理过程、结论或系统自身行为做出必要解释5、提供知识获取、机器学习与知识库的维护手段6、提供用户接口,方便用户使用与分析用户需求专家系统的一般结构并描述各部件功能:(看书上图)1、知识获取机构(把知识输入到知识库中)2、知识库与其管理系统(存储领域的原理性知识、专家的经验性知识与有关的事实)3、推理机(模拟专家的思维,控制问题求解)4、解释机构(对自己的行为做出解释)5、综合数据库与
24、其管理系统(存储初始数据和推理过程中的各种信息)6、人机接口(计算机与使用者之间的输入输出接口)知识获取:从知识源获得知识并转化为计算机能够表示、存储、处理的形式。从知识获取到建立知识库需要做的工作有哪些?1、抽取知识(把蕴含于知识源的知识抽取出来)2、知识的转换(把知识从一种表示形式变换成另一种表示形式)3、知识的输入(把用知识送入知识库的过程)4、知识的检测(通过检测发现并纠正错误)知识获取的困难在于:1、知识表示失配2、专家的启发性知识不精确3、有些启发性知识表示的不可能性4、缺乏开发专家系统的现代技术5、知识测试与调试的困难性什么是知识库?是合理组织的关于某一特定领域的述型知识和过程型
25、知识的集合。知识库管理的功能:1、知识的分类2、知识的组织与存储3、知识的检索4、知识的增加、删除、修改5、知识的复制和转储6、知识的一致性、完整性和无冗余性检查推理按结论的可靠性不同可分为?逻辑推理、似然推理按推理的方向可将逻辑推理分为? 正向推理 反向推理 混合推理冲突消解(冲突解决)的概念:当可用知识集里有两条以上的知识时,称为发生冲突,需要决定首先使用哪条规则的问题。冲突解决的方案有: 专一性排序 上下文排序 先到先触发 元规则搜索策略分类: 1、无知识搜索(搜索时不用任何与特定问题有关的信息和控制性知识)深度优先搜索(深度越大优先级越高)宽度优先搜索(深度越小优先级越高) 2、元知识
26、搜索(通过元知识,即指导如何使用对象级知识的知识,来进行搜索)专家系统的解释机制:专家系统对用户所需求的概念和系统的行为像领域专家一样做出通俗易懂的解释。解释系统应有的两个主要功能:1、动态说明系统正在做什么、为什么这样做2、对系统知识库的静态说明解释系统的作用:1、辅助发现和更正知识库中的错误2、在问题求解过程中,给出对推理过程和结论合理的解释3、让非领域专家的用户得到直觉的知识训练解释机制的设计要求:1、准确性2、可理解性3、智能性解释机制的实现方法: 1、预制文本法 2、追踪解释法 3、策略解释法4、自动程序员解释法产生式系统:采用产生式规则这种知识表示法的专家系统。产生式系统的基本组成
27、部分: 1、综合数据库 2、规则库 3、推理机产生式系统中的常用问题求解方法:1、正向推理(也叫数据驱动方法。逐条搜索规则库,对每一条规则的前提条件,检查事实库中是否存在,若不是全部存在,放弃该规则;若全部存在,执行该规则,把结论放入事实库中。反复执行以上过程,直至推出目标。)2、反向推理(也叫目标驱动方法。从目标开始,寻找以此目标为结论的规则,并对该规则的前提进行判断,若该规则的前提是另一规则的结论时,再找到另一规则,重复以上过程,直到对某个规则的前提能够进行判断)产生式规则的计算题(书P129)知识的分类: 1、领域知识(特定领域的知识) 2、元知识(是关于知识的知识,包含概括性知识、总结
28、性知识、关联性知识,是说明如何运用领域知识的知识)元知识的分类:1、指导规则的选择;2、记录与领域知识有关的事实;3、规则的论证;4、检查规则中的错误;5、描述领域知识表示的结构;6、论证系统的体系结构;7、辅助优化系统;8、说明系统能力元知识组成:元事实、元规则专家系统的主要设计步骤:1、初步设计;2、开发原型系统;3、知识库的维护专家系统的开发步骤:1、准备阶段;2、研究问题;3、整理知识;4、建立模型系统;5、改进与扩充;6、测试与维护专家系统开发工具与环境分哪几类?1、程序语言设计;2、知识工程语言;3、辅助型工具;4、支持工具;5、专家系统开发环境知识工程语言分类: 1、骨架型工程语
29、言;2、通用型工程语言第5章 基于模型的决策支持技术模型:客观事物的抽象和概括人们认识和研究客观世界的方法:逻辑推理、实验、模型模型特点:1、模型是现实世界的抽象;2、使用简单;3、节约时间;4、降低费用;5、便于灵敏度分析;6、有助于学习和练习。模型在决策中的作用:描述决策对象的变化规律,对未来状态进行预测,辅助对方案的设计、仿真、评价、优化、选择辅助决策模型:为辅助决策而研制的模型辅助决策模型分类:1、规划;2、推理;3、分析;4、预测;5、模拟实验;6、优化;7、评判;8、综合运筹模型辅助决策的形式:1、单模型辅助决策:利用现有的决策模型资源,建立单个针对决策问题的辅助决策模型,在计算机
30、上利用该模型的运算辅助决策。2、多模型辅助决策:将多个模型进行组织、存储、管理、组合、集成,以利于辅助决策。模型管理的两种形式:1、模型程序包2、模型库投入产出模型的分类:1、按时间分(静态模型;动态模型)2、按计量单位分(价值型;实物型)3、按编制围分(世界模型、全国模型、地区模型、地区间模型、部门部模型、企业部模型)模型表示的作用:将模型的参数与模型的逻辑,表示为计算机识别的形式,并尽可能方便模型管理。模型表示分为:数学表示、程序表示、数据表示、知识表示、面向对象表示、面向智能体表示模型的程序表示分为:1、子程序表示法:由主程序调用子程序,子程序则是一个具有输入、输出和执行顺序的完整程序。
31、2、语句表示法:用某种语言把模型写成语句集。模型的数据表示:将模型当作数据来处理,并用一组类似数据管理功能的软件来管理模型。数据表示分为:1、数据表示法:按照数据存储的方法把模型的元素、方程式和求解过程存储到一定的数据结构中2、关系表示法:将模型表示为输入属性和输出属性组成的关系 模型的知识表示分为:一阶谓词逻辑、框架、语义网络等 模型的面向对象表示:把模型看成是对象的集合,用对象来描述问题,用对象间的消息传递表达用户的功能需求 把模型按使用围和特点分为:基础模型库(包含各类问题求解的共性的、基础的模型)、专用模型库(包含某类问题求解的专用的、领域的模型) 模型库的组成:字典库、文件库 模型字
32、典库的作用:1、作为文件的索引,方便查询2、便于分类 模型字典库的组织结构:1、菜单形式(用层次式的菜单表示)2、文本形式(用文本形式表示)3、数据库形式(按关系数据库的形式表示) 模型字典库的主要容:1、语用信息(描述模型的分类、作用和版本)2、语义信息(描述模型的原理、研制、审核、接口参数)3、语法信息(描述模型载体的类型、定位、输入输出参数) 模型文件库的存储方式与优缺点:1、直接在计算机操作系统下存储(简单省事位置杂乱)2、建立子目录存储(结构清晰)3、在数据库管理系统中存储(管理简单快捷模型量大时服务效率低) 模型的维护:增加、插入、删除、修改 模型的运行管理包括:1、对数据的存取(
33、利用接口存取数据库的数据,从而使模型库和数据库形成统一整体)2、运行控制(先到字典库中找到目标模型记录,再按存取路径找到模型目标程序文件,最后独立运行目标程序或在DSS中运行) 模型库管理系统语言体系:1、模型管理语言MML(完成对模型的存储、管理、查询和维护)2、模型运行语言MRL(完成对单模型的调用运行,支持多模型的组合运行) 模型组合:将多个模型按一定逻辑关系组合起来 模型组合与模型辅助决策的关系:模型本身是辅助决策的基本单元,对模型的组合能完成多模型的组合决策或综合决策,从而达到对复杂问题辅助决策的作用 模型组合的基本程序结构:1、顺序结构2、循环结构3、选择结构 模型组合的基本过程:
34、36 / 36第6章 群决策支持技术群体决策:指多个人在共同的决策环境中,彼此之间进行通信和协作,依赖一定的决策方法,产生和评估决策方案,并最终形成决策的过程。 群体决策表示为五元组系统:GDS=M,O,W,S,CGDS群体决策系统M成员要素,即群体决策的主体O对象要素,即决策的环境、要解决的问题和要达到的目标W方法要素,即群体决策理论、采用的方法和手段S 方案要素,包括决策过程中产生的所有可能的决策方案C 协同规则要素,决策过程中的控制方法和协作机制群体决策的过程:1、发现共同问题;2、确定群体目标; 3设计决策方案; 4、方案评选; 5、执行、反馈群决策方法一:NGT法将讨论的问题发给每个
35、成员,各成员独立产生对问题的看法和解决意见;各成员提交自己的意见,收集完毕后进行集中公布;群成员有顺序地发表讨论意见,并相互提问和沟通,以便弄清每个意见,并做出评价;每个群体成员独立思考,并认真地排列出各种意见的优先顺序,提交结果给群体;群体成员讨论优先顺序;群体成员根据讨论意见再次重新排序;重复5、6,直到形成最终结果。优缺点:适合复杂情况下的群体决策,能比较公正地反映全体与会者的意见。效率较低不能解决群体决策过程中的某些不良行为 群决策方法二:德尔菲法确定一个专家群,群体成员无机会交换意见;组织者根据问题形成问卷,并发放给每位成员;各成员匿名、独立完成第一组问卷,并提出解决方案和论述;组织
36、者对问卷反馈进行集中,形成专家统计结果;组织者将统计结果和第一组问卷副本发放给每个成员,让每个成员认识了解自己对每个问题的回答距离整体的偏差,并在此基础上进行修改形成第二轮方案;根据需要,不断重复上述过程,使意见进行收敛,直到取得大体一致的意见。优缺点:资源利用充分性最终结论可靠性最终结论统一性寻找一个理想的专家群往往比较困难(专家要有相关知识,还要有认真填写问卷的动机)对于某些难以取得共识的问题,采用该方法很难达到预期效果。 群体决策的特点:1、有多个用户或决策者;2、群体共有一个可行的决策方案集;3、每个决策者有自己的反映优先价值和理想水平的目标;4、决策者可以在不同时间、不同空间,通过分
37、布式计算机网络进行联系;5、决策者以合作的方式在相互依赖的环境中相互作用;6、决策者既可以一起紧密工作,形成同类小组,采用个体决策支持系统,也可以先独立工作,再一起对问题进行评估;7、当意见未统一时,如果可以找到磋商的方案,则提供给群成员,以便从新的角度进一步分析GDSS是一种基于计算机的交互式系统,它通过辅助一群决策者的群决策过程,来解决特定领域的半结构化或非结构化问题。 GDSS功能1、成员管理2、任务管理3、信息支持4、交互支持5、统计计算6、模型支持7、方案管理8、决策控制GDSS的特点群体性、支持性、集成性、开放性、交互性、智能性 GDSS的组成:硬件平台,软件系统,群决策规程,参与
38、者 GDSS的基本组成结构:(图) GDSS的类型:1、决策室(同步-集中式,各决策者共处一室,没有或基本没有使用网络通信机制,通信是通过口头形式或简单的报文形式完成的,是最初的群决策形式,不能有效屏蔽各决策者之间的相互影响)2、局域决策网(异步-集中式,建立在LAN的基础上,每个决策者作为网上的一个节点,拥有自己的工作站和私有资源,并在决策过网络通信了解其他节点和全局的状态,强调各节点的独立性)3、 会议(同步-分布式,每个网络节点都是一个决策室型GDSS,网络将各节点联系起来,形成全系统围更广泛的群决策)4、远程决策(异步-分布式,利用远距离通信设备将各决策辅助工具连接在一起,使地理上分散
39、的群体成员通过远程“决策站”之间的持续通信,参与持续时间不定的问题求解和决策活动)Agent的定义Agent是处于某个环境中的基于硬件或软件的计算机系统,该系统有能力在这个环境中自主行动以实现其设计目标。 Agent分为弱Agent(WA):基于硬件或软件的计算机系统。强Agent(SA):被概念化或实现为人性化的计算机系统,具备一些人类才有的特性。 Agent的结构分类慎思型:将Agent看成一种特殊的知识系统,在目标的指导下通过符号AI的方法自主实现表示和推理。反应型:通过一组简单的规则,对外部刺激产生实时反应。混合型:指在一个Agent部集成了多个不同类型的实现型体系结构,组合了多个层次
40、的行为决策部件,不同结构之间单独运作或者相互作用,以共同对环境输入做出多种响应,从而表现出多种形式的特征。 BDI模型结构 反应型Agent结构 混合型Agent结构 多Agent系统(MAS):是指由多个分布和并行工作的Agent通过协作完成某些任务或达到某些目标的分布式问题处理的计算机系统。 MAS除了个体Agent所具有的基本特征外,还具有特性为:1、社会性;2、分布性;3、并行性;4、自治性;5、鲁棒性;6、易扩展性;7、协作性;8、不可预测和不确定性。MAS体系结构用于定义MAS体系结构的元素、元素之间的相互关系以与对元素的约束的一套规则。 多Agent系统结构1、集中式:将系统按自
41、上而下分成多个组,每个组采取集中式管理。2、分布式:各Agent组之间和组各Agent之间均为分布式结构,无主次之分,处于平等地位。3、混合式:集中式与分布式相结合的结构多Agent协调是Agent之间通过对资源、目标进行合理的安排,调整各自的行为,最大程度地实现各自的目标或系统的目标。 多Agent采取的协调策略1、 任务协调:是将多Agent大系统的总任务“分解”为子任务,进行面向目标的任务协调,合理地分配给各单Agent子系统,从而组织分工合作、协调解题,共同完成多Agent大系统的总任务。2、 资源协调:利用各个Agent状态、目标、功能、知识等信息资源,通过基于信息的资源协调,进行计
42、划任务调度,组织分工合作,协同解题,多Agent共同完成大系统的总任务。 Agent之间的合作求解主要采取的方式1、 任务共担:将复杂问题分解成几个子问题,每个子问题分别由一个Agent解决,并由管理Agent负责管理每个子任务的执行与结果处理。2、 结果共享:每个独立的Agent合作解决一个复杂问题,各Agent彼此共享结果,并由协调Agent对结果进行集成,形成完整答案。 基于多Agent的群决策支持系统共分4个层次:1、 对话层:由多个交互界面Agent组成,是用户与计算机的交互接口2、 任务规约层:由决策任务Agent组成,将大的决策任务形成的复杂问题分解为各个Agent能求解的子问题
43、3、 控制层:由协调Agent和决策管理Agent组成4、 问题求解层:针对决策任务形成的问题进行求解。 基于MAS的群决策支持系统中主要的Agent类型与功能是:1、 界面Agent:从用户获取信息,并向用户提供结论与解释机制2、 决策任务Agent:决策支持和决策分析3、 决策管理Agent:包括一个黑板(存放信息的全局数据库)和一个控制模块(用于管理黑板中的信息,完成多用户之间的信息的冲突消解和信息集成)4、 多库协同控制器:按照一定的调度规划,调度、协调各资源Agent,实现信息的调度融合。5、 资源Agent:包括知识库Agent,数据库Agent,模型库Agent,方法库Agent,图形库Agent等,用于完成多库协调器的对各种资源的调用任务。第七章 决策支持系统的设计与开发DSS系统开发的主要过程:1、系统分析2、系统初步设计3、系统详细设计4、各部件编制程序5、系统集成6、系统实施7、系统修正DSS开发过程示意图:(看书上图)