《两种工艺条件下渣油加氢产物对比研究化工类毕业论文.doc》由会员分享,可在线阅读,更多相关《两种工艺条件下渣油加氢产物对比研究化工类毕业论文.doc(41页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、两种工艺条件下渣油加氢产物对比研究摘 要本课题配合石油化工研究院渣油加氢处理技术开发工作,针对同一渣油经两种加氢工艺加工后的生成油,进行物化性质和八组分分离等研究。即将原料油与加氢处理油的正庚烷可溶物进入色谱柱分离,得到饱和烃、轻芳烃、中芳烃、重芳烃、轻胶质、中胶质、重胶质和沥青质八组分。借助元素分析仪、化学荧光定硫仪、化学发光定氮仪等对原料油、加氢处理油与八组分的氢、碳、硫、氮含量、金属含量等性质进行测定,给出原料油与加氢生成油组成的详细信息,为比较两种工艺的优缺点、催化剂选择、工艺流程选择等提供依据。结果表明:硫、氮和金属等杂原子主要集中在较重的组分中。硫主要集中在芳烃和胶质组分中,其中重
2、芳烃和轻胶质中硫的含量最高,重芳烃中氮含量较前几个组分明显增多,重胶质氮含量最高。研究结果还表明:在脱金属段,工艺A的脱钒和脱镍程度都比工艺B要大,工艺A的脱钒、脱镍效果更佳;在脱硫、氮段,硫、氮的脱除率工艺B明显高于工艺A,工艺B的脱硫、氮效果更佳。渣油固定床加氢处理是合理利用渣油的最为有效的手段之一。渣油转化为更有价值的产物取决于对其组成和性质的认识,以与原料油与加氢处理油之间的关联关系的研究和转化工艺的选择。关键词:渣油;加氢;八组分;脱除率 Comparative study of the product of residue hydrotreatingby two different
3、 processesTong Beizhen(Industry Analysis 0501,Institute of Petrochemical Technology,Liaoning Shihua University,Fushun Liaoning,113001)AbstractCooperating with FRIPP working on development of residue fixed-bed hydrotreating technologies, various post-processing oils were obtained by two different pro
4、cesses, and the physical and chemical properties of the post-processing oils were investigated to compare the processes. Feedstock and fixed-bed residue hydrotreating product were dissolved by n-heptane, and were further separated into eight components. The eight components were saturates, light aro
5、matics, middle aromatics, heavy aromatics, light resins, middle resins, heavy resins and asphaltene separately. These separation schemes could quantify the components, and prepare for later analyses.With the help of modern instruments, the information of the composition and physical chemistry proper
6、ties of the samples were provided. Metal content was determined by ICP-AES; Sulfur was detected by ultraviolet fluorimetry, nitrogen by chemiluminescence. Those information and data they offered can provide necessary data for further study on group composition and chemical composition.The resultssho
7、w that heteroatom concentrates in heavier component. Sulfur mainly concentrates in aromatics and resins of eight components. Sulfur contentis highest in heavy aromatics and light resins of eight components. Nitrogen content increases in evidence in heavy aromatics, and is highest in heavy resins. Th
8、e results also demonstrate that at the stage of UFR, Art A removes vanadium and nickel more successfully,which is to say, Art A is more effective in removing vanadium and nickel.At the stage of VRDS, Art B is much superior to Art A in terms of the removal rate, in other words, Art B is more efficien
9、t in removing sulfur and nitrogen.Residue fixed-bed hydrotreating is one of the most effectively means of residue oil hydroprocessing. The effectiveness of the conversion of residue oil into more value products depends upon the careful evaluation of residue oil composition and property, comprehensiv
10、e study of the relation of feedstock and products and the selection of appropriate conversion process.Key words: Residue;Hydrotreating;Eight components;Removal rate37 / 411 绪论近年来,随着能源危机的日益加剧,原油变劣、变重,轻质油品的需求日益增加以与环保要求越来越严格等多种因素的影响,渣油的利用越来越被人们所重视,渣油深度转化也成为炼油厂长期追求的目标。如何深度加工产量日益增长的重质原油和其中的大量高硫减压渣油,以满足经济
11、发展对清洁燃料和低硫锅炉燃料油的需要和环保法规的要求,已经成为21世纪世界炼油工业开发的重点1。最近十几年来,我国重油转化领域已取得许多重大的技术进展:脱碳和加氢工艺有了新的发展与突破;用溶剂萃取沥青和胶质的改性工艺也日趋完善;另外还出现了许多不同工艺联合的组合工艺,为重油转化提供了多种可供选择的加工手段。为了更好地理解重质石油组分渣油的物理和化学行为,就要对渣油组分进行分离与分析,进行渣油组分含量的测定,同时借助各种有效的分析手段,深入系统地研究渣油原料与其加氢处理生成油的组成和性质,研究各种组分结构的物理和化学特性信息,进而揭示渣油的化学组成与催化转化、热转化性能与其产品质量之间的在联系,
12、这些研究对开发和优化渣油加工技术、调整工艺条件、制定合理的加工方案,具有重要的指导作用。1.1 渣油原料的主要特点渣油是原油中最重的馏分,包括常压渣油和减压渣油。常压渣油是原油在常压蒸馏装置中蒸馏后的塔底剩余物,而减压渣油是常压渣油在减压蒸馏装置中进一步蒸馏后的塔底剩余物。原油部分的硫、氮、残炭和金属等杂质均富集浓缩于渣油中,渣油原料具有自身独特的特点。从化学组成看,渣油含有较大量的金属、硫和氮等杂质元素以与胶质、沥青质等非理想组分。从化学性质看,渣油平均分子量大、氢碳比低,在反应中易结焦物质多。从物理性质看,渣油粘度大、密度高。此外,不同原油的渣油有其各自的特点,如有的渣油镍高、钒低,有的渣
13、油硫高、氮低,而有的则相反。1.2 渣油加氢的发展背景1、世界原油资源有限世界原油资源十分有限,2003年底,已探明世界原油储量为1733.99亿吨,2003年世界原油产量为34.04亿吨,以目前开采速度计算,世界原油储量可采40年左右,因此,原有资源十分紧,应合理、充分利用宝贵的石油资源。2、原油变重、变劣世界原油质量总变化趋势为,含硫和高硫原油比例逐年增加,含酸和高酸原油的产量也逐年增加。2002年世界原油总产量33亿吨,含硫原油和高硫原油的产量约占75%。同时,世界高酸原油(酸值大于1.0mg KOH/g)产量和稠油产量也在不断增加,到20世纪末,世界稠油产量占到了原油总产量的30%,因
14、此,重质原油的加工日益受到石油工业的重视。3、石油产品需求量增加随着全球经济的发展,人类对石油产品中间馏分油的需求量也不断增长,而对残渣燃料油的需求量却不断下降,从1973年到2000年,世界中间馏分油需求量由30%增长到41%。4、环保法规越来越严格60年代初,大部分残渣燃料被作为工业燃料油烧掉,使大量的含硫化合物转化成氧化硫排入大气,造成严重的空气污染。此后,很多国家都先后规定了环境空气的质量标准,还规定了单个污染源排放污染物的限制指标。例如,美国、日本和多数欧洲国家采取了限制锅炉燃料油含硫量的措施,并要求逐年降低。因此,为了满足降低燃料油含硫量的需要,国外率先开发了渣油加氢处理技术。所以
15、,石油资源不足、原油变重变劣、中间馏分油需求量增加以与环保法规越来越严格等因素的存在,极促进了渣油轻质化技术的发展。1.3 渣油加氢处理的主要化学反应渣油加氢处理过程主要是除去进料部分硫、氮、金属和高碳化合物。在渣油加氢处理过程中,所发生的化学反应很多,也很复杂,其中最基本的化学反应有:加氢脱金属反应、加氢脱硫反应、加氢脱氮反应、芳烃饱和反应、烯烃饱和反应和加氢裂化反应等。1、渣油加氢脱金属反应原油中的金属绝大部分存在于渣油,渣油中的金属(主要是镍、钒等)含量极少,只有百万分数量级,但很容易使加氢脱硫催化剂、加氢脱氮催化剂和催化裂化催化剂永久性中毒失活。因此,必须将渣油原料中微量的金属化合物脱
16、除。渣油加氢脱金属反应是渣油加氢处理过程中所发生的最重要的化学反应之一,在催化剂的作用下,各种金属化合物与硫化氢反应生成金属硫化物沉积在催化剂上,从而得到脱除。2、渣油加氢脱硫反应渣油加氢脱硫反应是渣油加氢处理过程中所发生的最主要的化学反应。在催化剂和氢气的作用下,通过加氢脱硫反应,各种含硫化合物的CS键断开,转化为不含硫的烃类和硫化氢,烃类留在产品中,而硫化氢在反应中脱除。3、渣油加氢脱氮反应原油中的氮约有70%90%存在于渣油中,而渣油中又大约有80%富集在胶质和沥青质中。在渣油加氢过程中,各种含氮化合物在催化剂的作用下,CN键断开,经加氢生成氨和烃类,氨从反应中脱除,而烃类留在产品中。4
17、、加氢裂化反应加氢裂化是在氢气和催化剂的存在下,进料中较大的烃类分子变成小分子的反应,这一反应主要生成减压瓦斯油(VGO),其次是柴油,还有百分之几的石脑油和气体。5、芳烃饱和反应渣油的芳烃加氢饱和反应主要是稠环芳烃的加氢,此类反应是渣油加氢处理过程所包含的加氢反应中最难进行的一类。在较高氢分压和较低的反应温度下,芳烃加氢饱和反应的化学平衡向右移动,有利于目标反应的进行,反之,则会使化学反应平衡向左移动,即有利于环烷烃脱氢与缩合反应,形成多环芳烃,进而缩合形成焦炭,沉积在催化剂上,使催化剂失活。因此,在渣油加氢处理过程中,应尽量保持较高的氢分压,同时加氢脱氮反应催化剂的温度不宜过高,以有利于芳
18、烃加氢饱和。6、加氢脱氧反应石油馏分中的有机含氧化合物主要有酚类(苯酚和萘酚系衍生物)和氧杂环化合物(呋喃类衍生物)两大类。此外还有少量的醇类、羧酸类和酮类化合物。醇类、羧酸类和酮类化合物很容易加氢脱氧生成相应的烃类和水,而羧酸类化合物在加氢反应条件下是脱羧基或使羧基转化为甲基。对芳香性较强的酚类和呋喃类化合物加氢脱氧比较困难,既有直接加氢脱氧,又有先对环加氢饱和后再加氢脱氧。7、烯烃饱和反应烯烃加氢饱和反应在所有渣油加氢处理反应过程中,反应速度极快,仅次于加氢脱金属反应速度。在加氢脱硫反应温度下,烯烃加氢反应基本达到完全饱和。烯烃加氢饱和是强放热反应,但由于渣油中烯烃含量较低,所以,尽管烯烃
19、加氢反应速度快,反应热多,但对总反应热的贡献不大。8、缩合生胶反应渣油加氢过程中,随各种加氢反应的进行,均发生一定的缩合生胶反应,其焦炭沉积在催化剂颗粒的外表面和表面,造成催化剂的中毒和失活。催化剂上积碳的沉积主要发生在催化剂预硫化结束切换渣油原料的15天以。在以后的运转过程中催化剂上的积碳沉积将趋于平缓。因此,渣油加氢装置开工进行原料油切换时,一定缓慢进行,以充分发挥催化剂的活性和稳定性。1.4 渣油与其生成油性质表征国外研究进展1.4.1渣油的物化性质、元素组成与其测定方法不同地域的渣油,往往具有不同的物化性质和元素组成。渣油的物化性质主要有密度、粘度、酸值、折光率、残碳、分子量等;元素组
20、成主要包括碳、氢、氮、硫等元素。目前,我国对渣油密度的测定采用GB/T1884或GB/T1885标准,粘度的测定采用GB/T265标准,酸值的测定采用GB/T264标准,折光率的测定采用GB/T6488标准,残碳的测定采用GB/T268或GB/T17144标准,分子量的测定采用SH/T0398标准。碳、氢元素的测定采用示差法或色谱法,氮含量的测定方法有杜马法、克氏法、微库仑法、化学发光法和导热法等,硫含量的测定方法有管式炉法、氧弹法、化学荧光法和微库仑法等,微量金属元素的测定方法有分光光度法、原子吸收光谱法、等离子发射光谱法等2。1.4.2渣油的组分分离在渣油组分分离方面,人们已经进行了大量的
21、研究工作,常用的分离技术有分子蒸馏、分离沉淀法和色谱法。迄今为止,在残渣油组分分离中应用最广的还是液体色谱技术,它可以将渣油分离成若干个组分,每个组分可以看作是由那些组成、结构、特性相近的成分组成的族组分。将渣油分离成饱和烃、芳香烃、胶质和沥青质的四组分分析方法,在石油炼制中已有较广泛的应用,它解决了不少问题,但对涉与反应的研究来说还嫌太粗糙。L.Carbognani用高效液相色谱法(HPLC)将脱沥青质的残渣油分离成四个组分,即饱和烃、芳烃和两种胶质组分,而且还可以将芳烃和胶质进一步分离成轻芳烃、中芳烃、重芳烃、轻胶质、中胶质和重胶质。几种分离技术的综合应用,就可实现更详细的的残渣油组分分离
22、,为残渣油组分结构的详细研究打下了基础。目前常用的渣油组分分离技术:(1)经典液相色谱法(EC)在渣油的族组成研究工作中,EC仍然是一种常用的分离技术,用于族组成分离的吸附剂主要用硅胶、氧化铝和白土,国常用硅胶、氧化铝为吸附剂。通过改变溶剂的极性、溶剂量和吸附剂的成分,按需要将渣油分离成若干组分。周晓龙3采用正庚烷和正丁醇依次沉降渣油,然后用氧化铝色谱柱分离方法,将渣油分离成饱和烃、轻芳烃、中芳烃、重芳烃、轻胶质、中胶质和重胶质和沥青质共八个组分。勇志4等在同步荧光光谱的监测下,用EC将渣油中的芳烃较好地按芳环数分离成六组分。EC分析渣油的族组成存在下列缺点:分离周期长,操作步骤繁琐;所用吸附
23、剂易对强极性物质产生不可逆吸附。但EC分离技术操作简单,应用围广,仍是应用最广泛的分离方法。(2)高效液相色谱法(HPLC)与EC相比较,HPLC具有较高的分辨率、分析速度快并节省有机溶剂。常用于渣油族组成分析的HPLC可分为液-固色谱和键合相色谱两种。液-固色谱常采用硅胶和氧化铝作固定相。王素琴5等采用HPLC法,氰基键合相色谱柱,以正己烷为流动相,定量分析了原油与渣油中族组成含量。俞鹏程6等在选择典型分子并对其测定校正因子和切片分类后,实现了用HPLC对掺有渣油的催化裂化原料油中的芳烃类别的测定。苟爱仙7等采用HPLC测定渣油族组成。目前已开展了HPLC与傅立叶变换红外、质谱、核磁共振、电
24、感偶合等离子体光谱等联用技术的研究8,并已取得了很大的进展,可以从根本上解决色谱流出物的定性问题,而且有些技术已有商品仪器出售。(3)超临界流体萃取分馏法(SFEF)SFEF是一种新型分离技术。它利用体系在临界区具有反常的相平衡特性与异常的热力学性质的原理,通过改变温度、压力等参数,使体系各组分间的相互溶解度发生剧烈的变化,从而实现组分的分离,具有在较低温度下实现溶质分离的特点,对于分离热不稳定难挥发物质尤为适宜9-10 。该方法能够将渣油分离成数目较多的窄馏分,通过各窄馏分单独实验以确定它们各自的性质和反应能力,从而获得描述渣油加工性能的确定模型。琐奇11利用超临界戊烷将渣油切割为l4个窄馏
25、分。程健12等将辽河减压渣油切割成7个窄馏分。吴文涛13等利用SFEF研究了其在哈国减压渣油中的应用。王艳秋14等利用SFEF萃取物气质联用色谱分析对大港减压渣油进行了研究。(4)薄层色谱法薄层色谱-火焰离子化检测器法(TLC-FID)可对渣油进行快速族组成分析15。该方法使脱沥青油在硅胶棒上展开后在FID上直接进行定量检测,TLC-FID快速的特点满足工业生产的分析需要16。郭志军17等用TLC-FID棒测定重质油的族组成。苟爱仙18等研究了TLC-FID法在重催原料族组成分析中的应用。黄玉秋19等用TLC-FID测定渣油族组成。1.4.3渣油八组分分析方法要更深入了解渣油的组成和结构,把渣
26、油分成四个组分往往满足不了科研和生产的需要,因此,发展了八组分分析方法。石油与其产品八组成分析是将石油产品分为饱和烃、轻芳烃、中芳烃、重芳烃、轻胶质、中胶质、重胶质和沥青质(SARA)。渣油八组分分离测定,常用的为EC和HPLC。EC采用溶剂洗脱、蒸除溶剂后再称重来测定各组分含量;HPLC测定渣油八组分,是将渣油用正庚烷分离出沥青质,脱沥青质部分用HPLC分离为饱和烃、轻芳烃、中芳烃、重芳烃、轻胶质、中胶质和重胶质。最先冲洗出来饱和烃用示差折光仪检测,芳烃和胶质用紫外检测器检测,最后根据峰面积(或峰高)定量。近年来,随着计算机技术的发展和化学计量学如逐步多元线性回归(SMLR)、主成分分析(P
27、CA)、主成分回归(PCR)、偏最小二乘法(PLS)、人工神经网络(ANN)等的诞生,光谱学和化学计量学结合产生了一些定性定量研究渣油的新方法。饱和烃在紫外区虽然没有吸收,但由于其含量与其他组分是归一的,对渣油的紫外吸收有负贡献。芳烃、胶质和沥青质由于其分子结构不同,致使在紫外-可见区(190 nm -700 nm)有不同的吸收。紫外可见光谱-偏最小二乘法(UV-PLS)是将重质油的紫外光谱数据经过PLS数据处理后,与重质油的族组成数据相关联,得出相应的关联式,从而可由重质油的紫外光谱数据计算出重质油的族组成含量。齐邦峰,祖宾20等通过测定各种芳香环系类型的模型化合物紫外光谱图,与胶质、沥青质
28、的紫外光谱与其二阶导数光谱图进行分析比较,研究了减压渣油胶质、沥青质的化学结构得出了胶质和沥青质可能的近似结构模型。红外光谱(IR)的一个突出特点是每一功能基和化合物都具有其特异的光谱,其谱带的数目、频率、带形和强度均随化合物与其聚集态的不同而异,渣油的多环芳烃含量、胶质含量和沥青质含量都较高,即杂原子(氧,硫,氮等)含量较高,与轻质油品只含烃类物质不同,故渣油的光谱将有明显的光谱特征,它们将对红外光谱测定SARA组成产生明显影响。近红外光(NIR)是介于可见区和中红外区间的电磁波,属分子振动光谱,是基频分子振动的倍频和组合频,主要反映了含氢基团(如C-H,O-H,S-H,N-H等键)的特征信
29、息。近红外光谱包含了样品的大量组成结构信息,样品性质(如油品的密度、馏程和闪点等)与其组成结构是相关的。Narve Ask21等采集各烃族组成的NIR谱图数据,采用PCA和PLS处理数据,用IR和NIR分析了18种原油。NIR测定渣油的饱和烃和芳烃含量的效果较好,但光谱中含有胶质和沥青质的信息相对较少,导致其预测结果偏差较大。1.4.4渣油烃类化合物的结构组成渣油中烃类化合物主要是饱和烃和芳香烃。在重质油加工过程中,芳香碳含量高是引起结焦和催化剂失活的重要原因,因此研究重质油的化学结构主要是力图搞清重质油组分中芳香环系的结构。紫外-可见吸收光谱是检测芳香化合物的常用方法,但由于减压渣油中的芳香
30、化合物是复杂的混合物,所以得不到详细的结构信息。一般荧光光谱法的灵敏度和选择性比紫外-可见吸收光谱高,但分析石油中芳香化合物时,仍不能得到分辨良好的谱图22。13C-NMR虽然可定量测定重质油中的芳香碳含量,但不能测定芳香环数分布。同步荧光光谱法可以定性分析多环芳烃的环数分布,还可以定量测定混合物中的某种特定的多环芳烃化合物。王子军23等以中性氧化铝作固定相,将减压渣油中的芳烃化合物较好地按芳环数进行分离。质谱法是测定重质油烃族组成的一种标准方法,其工作是由样品的离子化、离子的分离和检测这三部分组成。其在结构族组成分析方面是其它仪器无法与之相比的。另外,由于一样类型化合物的一样碎片离子峰强度具
31、有加和性,可以作为质谱定量的依据。该方法测定的结果是所有油品结构和组成分析中最为详实的,但由于受到检测器的限制,渣油难于离子化,不能用质谱测定其组成。玉琢24等研究了渣油族组成分析方法的进展。1.4.5含杂原子组分分析1.4.5.1 胶质和沥青质结构组成胶质和沥青质在原油中构成天然的油包水型的乳化剂,对石油分散系统稳定性影响很大。用于表征沥青质性质和分子结构的方法有核磁共振(NMR)、元素分析法(EA)、蒸汽压渗透法(VPO)、凝胶色谱法(GPC)、体积排除色谱法法(SEC)以与色谱-质谱联用(GC-MS)、傅里叶红外(FTIR)等分析仪器的应用,这些都为混合物、石油产品、煤产品和生物质等组成
32、复杂体系的结构特征分析提供了条件。董喜贵25等通过测定沥青质的1H-NMR和13C-NMR谱,推测了模型分子的结构。胶质和沥青质中存在许多杂原子由于缔合等原因形成不同层次的超分子,要准确测定其分子量,需要有效解聚胶质和沥青质为单个分子,而又不破坏分子化学键。目前的VPO测定的分子量往往偏大,一般的质谱测得的平均分子量偏小。激光解聚-质谱(LDMS)法26可以克服渣油分子量测定中的困难,可以在分子层次上测定渣油组分的平均分子量,认识渣油化学结构和芳核大小与平均分子结构参数。利用RICO法可定量测定与芳香核相连的正构烷基侧链和连接两个芳香核的正构烷基桥的分布。王子军,梁文杰27-28利用钌离子催化
33、氧化法研究得出胜利减压渣油的芳香分、胶质和庚烷沥青质中都存在C1C33的正构烷基侧链和C2C22的正构烷基桥。另外,通过参数的计算可以对沥青质芳香环系的缩合程度进行估计29。昌鸣30等用柱液体色谱分析了沥青类产品的烃族组成。1.4.5.2微量金属渣油中含有铁、镍、铜、钒、钙等微量金属,金属杂质沉积在催化剂的表面上,降低了催化剂的活性和选择性,影响了产品的收率,对石油加工、储运与环境保护都会产生不良影响。测定渣油中微量金属含量的方法有分光光度法、原子吸收光谱法等。立行31等建立了乳浊液进样-火焰原子吸收光谱法测定渣油中的铁、镍。季梅32等利用电感耦合等离子发射光谱法(ICP-AES)测定渣油中铁
34、、镍、钙、镁、钠、钒金属元素,实现了多种元素同时快速测定,避免了各金属元素间的相互干扰。金生,丽华33采用微波消解-微波等离子体炬原子发射光谱法(MPT-AES)测定原油和渣油中的铁、镍、铜和钠,微波消解处理样品,大大缩短了样品处理时间。黄宗平34等用X射线荧光光谱法同时测定渣油中的硫、钒和镍。邹莹35等研究了辽河减压渣油中铁的赋存与分布特征。会成36等对渣油加氢处理过程中金属分布与脱除规律进行了研究。1.4.5.3硫化物硫对石油加工、产品质量有极大影响,所以硫含量也作为渣油性质表征的重要指标。原油中的硫约有70%以上集中在减压渣油中。渣油中硫化物越来越引起人们的重视,并针对渣油开发了一些测定
35、硫类型的方法,如用载重金属盐的硅胶吸附色谱法分离高沸点馏分或减压渣油芳香分中的硫醚或噻吩类化合物;将硫醚选择性氧化成亚砜并用柱色谱加以分离的方法,选择性氧化后结合红外光谱定量分析减压渣油中的硫醚硫含量的方法;用碘络合硫醚并用紫外光谱定量的方法。王宗贤37等用改进的KIO3电位滴定法测定胜利和孤岛减压渣油中的硫醚硫和噻吩硫,考察了硫醚硫和噻吩硫在两种减渣中的分布。周永昌38等基于不同类型硫的选择性氧化、氧化组分与未氧化组分间极性的差异实现硫类型分析。除了电位滴定法和选择性氧化法,近年来石油渣油中硫化物类型的分析方法还有红外光谱法、化学转化法、X射线光电子能谱(XPS)法和X射线吸收近边结构(XA
36、NES)法和裂解色谱法。1.4.5.4氮化物我国原油含量普遍偏高,一般为0.1%0.5%39。在石油加工过程中,含氮化合物的存在不仅会引起催化剂中毒失去活性,而且对油品的抗乳化性能、抗氧化安定性、紫外安定性有非常显著的不利影响40。测定氮含量常用的方法是化学发光法。程仲芊41等用化学发光法测定原油与渣油中氮的含量。文萍42等研究了催化剂对渣油悬浮床加氢产物氮分布的影响。目前,颜色较浅的轻馏分油(如汽、柴油)中碱性氮测定主要采用手动滴定的方法。国测定碱性氮含量主要采用SH/T0162标准方法。陆克平43对SH/T0162标准方法中的滴定溶剂和试样混合溶剂配方进行了改进,能测定浅色与深色油品中碱性
37、氮化物的含量。国外已公布的碱性氮定量方法有44:UOP269-707和UOP312-59。前一种方法是将油样溶于冰醋酸中,并于非水溶液中插入玻璃电极和甘汞电极,用高氯酸-冰醋酸溶液进行电位滴定;后一种方法适合于石脑油试样的测定。1.5 本课题的研究方向与应用价值作为原油中最重的馏分,渣油是加氢裂化工艺的重要原料之一。由于不同油田生产的原油其性质和组成相差甚远,因此,通过对渣油的性质和组成的分析与比较,一方面,为选择适宜的加工途径,生产合适的石油产品提供必要的依据。另一方面,为加氢裂化、加氢精制等生产过程中所使用催化剂的开发与其工艺的优化提供技术支持。由于原料性质与来源的差异,所选用催化剂金属组
38、分、最佳原子比、金属含量、催化剂孔结构与酸度以与助剂与其含量将有所不同。此外,对产品的质量控制、新油品的开发以与环境保护等也具有指导作用。本课题配合石油化工研究院渣油加氢处理技术开发工作,针对该过程所加工的减压渣油与其在不同固定床加氢工艺处理下的生成油,拟进行八组分的分离,然后借助多种现代大型仪器进行密度、粘度、分子量、硫、氮含量等性质的测定,以与原料油与其加氢处理生成油八组分硫、氮含量分布的测定,全面深入地研究渣油原料油与两种加氢工艺处理生成油之间的关系,进一步比较两种工艺的优缺点,为催化剂级配优化,催化剂选择,工艺流程选择、装置操作条件和原料油的优化,提供依据。2实验部分2.1实验样品、试
39、剂和实验仪器2.1.1实验样品减压渣油原料油(YL)与其在两种工艺下的加氢处理生成油:工艺A脱金属段生成油(UFRA),脱硫、氮段生成油(VRDSA);工艺B脱金属段生成油(UFRB),脱硫、氮段生成油(VRDSB)。此外,还有两种工艺加氢处理生成油的混合油(WY)。 图2.1 实验样品Fig 2.1 Experimental samples2.1.2实验试剂正 庚 烷:分析纯,市永大化学试剂开发中心生产;无水乙醇:分析纯,新兴试剂厂生产;甲苯:分析纯,市大茂化学试剂厂生产;水:一次蒸馏水;中性氧化铝:层析用,100目-200目,试剂级,谊恒工贸精精细化工厂生产。(前期处理:在马弗炉中,500
40、下活化6 h;冷却至室温后装入已称重的细口瓶中,称量氧化铝的重量,按其重量加入1%蒸馏水,盖紧瓶塞,剧烈摇动5min,放置24h备用)2.1.3实验仪器色谱吸附柱:1700mm20 mm i.d.;带套管,50恒温循环热水保温;BS 124S电子天平,赛多利斯仪器系统生产;YXSF-型精密超级恒温水浴锅,山东省鄄城永兴仪器厂生产;DZF-6050型真空干燥箱,精宏实验设备生产; LC-213烘箱,爱斯佩克环境仪器生产;K-7000旋转蒸发仪,德国KNAVER公司生产;K-7000蒸汽压力渗透仪,德国KNAVER公司生产;SK3300H超声波震荡仪,泽华唐标准仪器厂生产。2.2渣油的分离2.2.
41、1渣油中沥青质的分离与测定称取试样大约15g (准确到0.0001g)于烧杯中,按每克试样以40mL溶剂之比加入正庚烷。用超声波震荡仪震荡使样品与正庚烷混合均匀,用离心机离心,将上层清液倒出,再加入正庚烷用超声波震荡仪溶解,再用离心机离心,如此反复三次后用无水乙醇清洗不溶物至小烧杯中。最后放入真空烘箱在105110,53.3KPa66.7KPa负压下干燥,取出冷却至室温,称重,正庚烷不溶物作为沥青质组分。正庚烷可溶物部分,在旋转蒸发仪上赶去大部分溶剂,用于色谱柱分离。2.2.2八组分分离方案表2.1 溶剂加入的次序、用量和流出组分Table 2.1 The order, volume of s
42、olvent and effluent序号溶剂名称溶剂用量/mL流出组分1234567正庚烷含甲苯5%正庚烷含甲苯15%正庚烷含甲苯50%正庚烷甲苯甲苯+无水乙醇(1:1)无水乙醇500400400400300300300饱和烃轻芳烃中芳烃重芳烃轻胶质中胶质重胶质图2.2 八组分分离流程图Fig 2.2 The chart of separation scheme of eight compositions2.3 渣油的性质表征2.3.1一般性质测定密度用石油产品密度法或相对密度测定法(毛细管塞比重瓶和带刻度双毛细管比重瓶法)测定,采用GB/T13377-92标准;100粘度用石油产品运动粘度
43、测定法,采用GB/T265-1988标准;残炭用石油产品残炭法测定,采用GB/T17144-1997标准;分子量用石油蜡和石油脂分子量测定法,采用SH/T 0398-1992标准。2.3.2碳、氢元素测定用德国生产的Elementar Vario EL元素分析仪测定碳、氢含量。高压氦做载气,流速200mL/min,高纯氧做燃烧气,流速90 mL/min,燃烧温度为1100,还原管温度550,产生的气体进色谱测定碳、氢含量。2.3.3氮、硫含量测定氮含量用ANTEK-7000化学发光定氮仪(Antek公司,美国)测定,采用SH/T 0704-2001标准。高压氧气做载气,流速150mL200mL
44、/min。氧气流速300mL400mL/min。燃烧温度为1050。硫含量用ANTEK-7000B化学荧光定硫仪(Antek公司,美国)测定,采用SH/T 0689-2000标准。反应气为裂解氧气,流速450mL500mL/min。入口载气为氧气,流速130mL160mL/min。炉温为1100。2.3.4金属含量测定金属含量用美国Thermo Jarrell Ash公司生产的全谱直读电感耦合等离子发射光谱仪测定。光谱仪操作条件与元素分析线和方法检出限分别见表2.2和表2.3。表2.2 IRIS Advantage HR型光谱仪工作条件Table2.2 Operating conditions
45、 for IRIS Advantage HR ICP-AES入射功率/W反射功率/W冷却气L/min辅助气L/min载气L/min溶液提升量mL/min测光高度/nm清洗气刻度值1150280.40.61.21183.0表2.3 元素分析线与方法检出限(MDL)Table2.3 Elemental line of and MDL元素分析线MDL,mg/LV292.400.0021NiFe231.60238.200.00140.00063结果与讨论3.1渣油原料的一般性质对于渣油这样复杂的混合物其化学组成的研究要从元素组成入手。采用上述一般性质的测定方法对YL进行了性质分析,其结果见表3.1。表
46、3.1 减压渣油原料油的性质Table3.1Properties of residue feedstock项目数据密度(20)/g.cm-30.9922C%85.23H%10.79H/C比1.51S%2.78N/g.g-13382饱和烃%30.1轻芳烃%18.95中芳烃%13.30重芳烃%18.30轻胶质%3.45中胶质%19.94重胶质%0.31沥青质%1.50Ni/g.g-121.14V/g.g-139.84从表3.1数据可以看出,从化学组成看,渣油含有较大量的金属、硫和氮等杂质元素以与胶质、沥青质等非理想组分,不适合直接作RFCC的原料,对其加工过程影响较大。在加工过程中带来的最主要问题
47、是造成大量的生焦倾向,不仅使转化率和汽油产率下降、生焦增多,而且还会带来产品质量和环保问题。YL中饱和分质量分数较低,为30.1%,轻芳烃、中芳烃、重芳烃质量分数分别为18.95%、13.30%、18.30%,轻胶质、中胶质、重胶质质量分数分别为3.45%、19.94%和0.31%,沥青质质量分数为1.50%,可知YL中芳烃尤其是多环芳烃组分所占比例较大,对FCC不利,不能直接作FCC原料。从化学性质看,渣油氢碳比低,在反应中易结焦物质多。从物理性质看,渣油密度大。3.2渣油的元素分析原料油性质对渣油加氢处理过程有重要的影响,主要包括原料油中硫、氮和镍、钒等微量金属杂质含量等。3.2.1原料油与其加氢处理生成油氢碳原子比(H/C)分布H/C是衡量渣油加工性能和使用性能的重要参数,对于渣油这样复杂的混合物,单纯用它的碳含量或氢含量不易进行比较,氢、碳原子数值之间的比值可为表征其分子结构提供重要的信息45。不同原油的氢碳比,能综合的反应原油的轻重程度和结构组成。不同的氢碳结构的分子H/C有一定的差别,如含环状结构,其H/C就下降,尤其是含有多环芳香结构时,其H/C显著减小。当重油轻质化时,需要采用各种加工手段调整氢碳比。渣油原料