第6章--鲁棒控制系统的计算机辅助设计与仿真---MATLAB控制系统设计与仿真-教学ppt课件.ppt

上传人:飞****2 文档编号:91522967 上传时间:2023-05-27 格式:PPT 页数:123 大小:1.80MB
返回 下载 相关 举报
第6章--鲁棒控制系统的计算机辅助设计与仿真---MATLAB控制系统设计与仿真-教学ppt课件.ppt_第1页
第1页 / 共123页
第6章--鲁棒控制系统的计算机辅助设计与仿真---MATLAB控制系统设计与仿真-教学ppt课件.ppt_第2页
第2页 / 共123页
点击查看更多>>
资源描述

《第6章--鲁棒控制系统的计算机辅助设计与仿真---MATLAB控制系统设计与仿真-教学ppt课件.ppt》由会员分享,可在线阅读,更多相关《第6章--鲁棒控制系统的计算机辅助设计与仿真---MATLAB控制系统设计与仿真-教学ppt课件.ppt(123页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第第6章章 鲁棒控制系统的计算机鲁棒控制系统的计算机辅助设计与仿真辅助设计与仿真 6.1 鲁棒控制工具箱介绍鲁棒控制工具箱介绍6.2 鲁棒控制系统概述鲁棒控制系统概述6.3 鲁棒控制系统的设计方法鲁棒控制系统的设计方法6.4 鲁棒控制系统设计实例鲁棒控制系统设计实例6.1 鲁棒控制工具箱介绍鲁棒控制工具箱介绍6.1.1鲁棒控制工具箱简介鲁棒控制理论是近年来现代控制理论研究的热点和前沿课题。我们知道,在对控制系统进行分析和设计前一般首先需要对被研究的对象进行建模,系统控制器的设计一般是在理想模型的情况下完成的。MATLAB提供的鲁棒控制系统工具箱(RobostControlToolbox)提供了

2、多变量线性鲁棒控制系统分析和设计的函数和工具。研究对象包括存在建模误差、系统参数不确定或动态特性不能完全确定的系统。工具箱提供的功能强大的算法函数可以帮助用户快速完成鲁棒控制系统(主要是线性系统)的复杂计算和设计工作。借助鲁棒控制系统工具箱,我们可以完成的工作包括:1)鲁棒多变量控制系统设计鲁棒控制系统工具箱(RobostControlToolbox)是建立在控制系统工具箱(ControlSystemToolbox)的基础上的,为用户提供了更为先进的控制算法。它在现代控制理论与实际控制工程之间建立了一座桥梁。该工具箱包括一系列有关鲁棒多变量控制设计方法的实现算法,其研究的重点为多变量频率响应的

3、奇异值和多变量Bode图的分析和绘制。2)鲁棒性分析系统的不确定性因素具体有外界噪声/干扰信号、传递函数的建模误差以及未建模的非线性动态特性。鲁棒控制系统工具箱可以让用户找到系统在这些不确定性条件下的多变量稳定裕度的度量。使用的方法包括:最优对角缩放、Perron特征向量对角缩放和奇异值方法等。3)鲁棒性系统综合经典或现代鲁棒控制系统的设计人员通常采用回路设计(LoopShaping)的系统设计方法来满足系统的设计要求。多变量系统的回路设计方法是通过奇异值Bode图实现的。鲁棒控制系统工具箱提供了各种SISO或MIMO回路设计的方法,诸如LQR、LQG、LQG/LTR、H2和H等等。4)鲁棒模

4、型简化有时根据鲁棒控制理论设计出来的鲁棒控制器的阶数很高以至于难于实现,这时通常需要进行控制器的简化。其它模型简化的场合还包括系统模型简化以及大规模系统仿真等等。一个良好的模型简化算法应该同时具有数值鲁棒性和保持闭环系统鲁棒性的能力。鲁棒控制系统工具箱提供的模型简化算法可以满足这些要求。6.1.2系统的分层数据结构表示在MATLAB的鲁棒控制工具箱中使用了一种特殊的数据结构,即分层数据结构(HierarchicalDataStructure),来表示所描述的系统对象。这使得用户可以用一个简单的变量来代表所要研究的系统并进行相关的运算,从而很大程度上方便了用户访问鲁棒控制工具箱中函数的过程。这个

5、变量称为tree类型的变量。下面的M文件函数可以用来创建系统的tree变量:1)mksys该函数可以将代表系统对象的矩阵封装到单个MATLAB变量中。例如ssg=mksys(ag,bg,cg,dg);TSS=mksys(A,B1,B2,C1,C2,D11,D12,D21,D22,tss);第一行程序将代表系统状态方程的4个矩阵ag、bg、cg和dg统一用ssg来描述;第二行将二输入输出系统(A,B1,B2)的状态方程封装到变量TSS中。也可以在mksys的最后参数中指定所要描述系统的类型。2)branch该函数的基本功能是获取封装在系统或tree变量中的矩阵信息。如D11,C2=branch(

6、TSS,d11,c2);从系统TSS中得到矩阵D11和C2;ag=branch(ssg,a);从系统状态方程ssg中获取矩阵ag。如果想一次得到ssg中所有的矩阵,可以输入ag,bg,cg,dg=branch(ssg);表6.1mksys命令的常见参数3)tree为用户提供了一个创建分层数据结构包括矩阵、字符串甚至其它tree类型的一般工具。例如,如果希望同时保存二输入输出系统(A,B1,B2,)、控制器(af,bf,cf,df)、频率响应w;sv以及这个系统的名称AircraftDesignData,就可以输入fr=tree(w,sv,w,sv);DesignData=tree(plant,

7、controller,freq,name,TSS,ssf,fr,Aircraft.DesignData);图6.1显示了tree变量DesignData的层次结构。图6.1DesignData的层次结构为了得到tree变量DesignData第一层中的name的变量值,可以输入name=branch(DesignData,name)ans=AircraftDesignData在RobustControlToolbox的函数中,如果输入参数包含一个tree变量,该函数能够自动检查该变量是否代表某个系统。如果是,那么该函数将自动将该输入变量展开,用它代表的实际系统矩阵来替代原来的系统变量作为函数的

8、输入参数。例如,下面的两行程序实际上完成相同的计算功能:hinf(TSS);hinf(A,B1,B2,C1,C2,D11,D12,D21,D22);6.2 鲁棒控制系统概述鲁棒控制系统概述6.2.1奇异值、H2和H范数假设矩阵ACmn的秩为r,将A*A的非负方根i称为矩阵A的特征值,其排列次序为12p,p=min(m,n)。如果rp,则矩阵A具有p-r个零奇异值,即对于任何矩阵A,有(6.1)其中,r=diag(1,2,r)。式(6.1)称为矩阵A的奇异值分解(SVD),其中A的最大奇异值定义为如果矩阵A是nn的方阵,则它的第n个奇异值,也就是最小的奇异值,定义为奇异值通常具有以下的性质这里的

9、i代表矩阵A的第i个特征值。如果如果存在存在(6.2)(6.3)其中属性1在鲁棒控制系统的分析和设计中很重要。因为该属性反映了矩阵A的最大特征值与输入向量x在所有可能方向上的矩阵增益的最大值之间的关系。对于稳定的Laplace变换矩阵G(s)Cmn,p=min(m,n)。定义G(j)的与频率相关的H2和H范数如下:H2范数(6.4)H范数(6.5)6.2.2标准的鲁棒控制问题鲁棒多变量反馈控制系统的设计问题可以简单地描述为:为系统设计的控制规律使得系统在环境或系统本身的不确定性影响下仍然具有指定容许误差范围内的系统响应和系统误差。这里的不确定性包括很多方面,但其中最重要的是指系统的外界干扰(噪

10、声)信号和系统传递函数的建模误差。鲁棒控制系统设计将采用H范数作为这类不确定性因素的度量。鲁棒控制系统设计问题的一般描述如下:假定一个多变量系统P(s),寻找某个稳定的控制器F(s),使得闭环系统的传递函数满足下面的关系:(6.6)这个过程可以用图6.2来说明。式(6.6)称为鲁棒条件。KM称为最小不确定性的大小,由每个频率对应的奇异值来度量。函数KM又称为对角扰动的多变量稳定裕度(MSM),它的倒数用表示,即(6.7)图6.2标准鲁棒控制问题的方框图如果n不存在,该问题又被称为鲁棒镇定问题(Robuststabilityproblem)。上述问题的求解涉及到的非凸优化问题,它不能通过标准的非

11、线性梯度下降方法计算得到,因为此时的算法收敛性无法保证。然而由于存在上界,可以通过下式计算KM:其中,DpD为Perron最优增益矩阵。D=diag|(d1I,dnI)|dj0,显然也是1/KM的上界。如果这些上界都满足鲁棒条件约束,那么可以充分保证和KM也满足鲁棒条件约束。6.2.3结构与非结构不确定性实际上每一个i(i=1,n)自身都是矩阵并且代表不同种类的物理不确定性因素。在鲁棒控制中,这些不确定因素分为结构不确定性和非结构不确定性。非结构不确定性代表与系统频率无关的项。例如,驱动器的饱和特性、高频段的非建模误差或者低频段的系统扰动等等。它们与正常系统模型的关系可以表示为(6.8)(6.

12、9)或者写成相乘的形式图6.3非结构不确定性的加法与乘法表示结构不确定性代表系统模型中的参数变化,例如系统传递函数中零极点位置的变化,系统状态矩阵中系统矩阵的变化,以及指定回路增益的变化等等。MATLAB的鲁棒控制系统工具箱允许用户对结构和非结构不确定性进行建模,并将它们考虑进控制器的设计过程中。提供的各种函数和工具可以完成系统的鲁棒分析和鲁棒控制器的设计。6.2.4鲁棒控制分析鲁棒分析的目的是通过某种适当的非保守分析算法来“观察”MSM矩阵。换句话说,我们将找出系统保持稳定状态下不确定性的上界。其基本步骤包括:(1)定义不确定性模型。(2)将不确定输入(包括结构和非结构不确定性因素)写成图6

13、.4所示的M-形式。图6.4例6.1对非结构不确定性进行建模。下面的传递函数代表某架飞机的动态特性。如果正常的模型为,则图6.5加法和乘法表示的不确定性的Bode图例6.2结构不确定性的建模。下面将讨论如何从状态空间的A和B矩阵中提取系统的结构不确定。假定飞机的状态空间模型表示为:其中,(p,r,a,r)的初始导数定义为系统状态矩阵包括图6.6对参数不确定性的表示由模块框图得到的状态方程为从而得到干扰情况下的状态方程为整个系统模型可以写成使用线性分数转换函数lftf,可以获得系统u1到y1的闭环控制反馈回路F(s)。从系统u2到y2的传递函数是M(s)。6.2.5系统鲁棒分析基于Sandber

14、gZames的小增益定理可以推出下面的标准奇异值稳定鲁棒性定理:对于一个M-表示的系统,如果对于任意的稳定(s)满足(6.10)其中,为满足R,或者的任意数,则可以断定该M-系统是稳定的。下面来介绍多变量稳定裕度(MultivariableStabilityMargin,简称MSM)的概念:其中,=diag(1,n)。KM与具有以下的性质:(1)KM是使得系统不稳定的最小(2)如果不存在满足det(I-M)=0,则KM=。(3)KM是M和结构的函数。(4)对于任意的标量,有(M)=|(M)。(5)设为谱半径,则(M)(M)(M)。(6)如果=I,C,则(M)=(M)。(7)如果为满秩矩阵则。(

15、8)推广的小增益定理:如果M(s)是稳定的,并且对于所有稳定的i满足i1,则受扰系统(I-M)-1稳定的充分必要条件为对于任意的R,满足KM(M(j)1。1981年,Safonov提出一种对角缩放的方法来计算MSM的上界,如图6.7所示。其基本思想是:如果和D是对角矩阵,=D-1D,而DMD-1可能比M小得多,那么可以得到下面表示的KM的上界(6.11)图6.7对角缩放的概念其中的DpD代表Perron最优缩放矩阵,D=diag(d1I,dnI)|dj0。很明显,无缩放的奇异值稳定鲁棒性定理使用KM最保守的上界来预测MSM,而经过缩放的奇异值可能比前者准确得多。鲁棒控制工具箱为用户提供了许多函

16、数,以用于计算多变量系统的结构奇异值(SSV)1/KM()的各种上界值:(1)奇异值:sigma和dsigma。(2)Perron对角缩放:psv和ssv。(3)Osborne对角缩放:osborne和ssv。(4)乘法缩放:muopt和ssv。(5)特征增益曲线:cgloci和dcgloci。下面通过具体的例子来说明,当我们知道更多关于的信息后,仍然采用奇异值进行鲁棒性分析可能会过于保守。例6.3假定某个系统具有下面的传递函数在其输入端具有相乘形式描述的不确定性,试确定传递函数G(I+G)-1的SSV。解:具体的计算程序为:num=0432;12640;000;0832;den=11232;

17、m=2;n=2;tfm=mksys(num,den,m,n,tfm);%用分层的数据结构表示该系统ssg=tfm2ss(tfm);%转换成状态空间形式w=logspace(-3,3);perron=20*log10(ssv(ssg,w);%使用Perron特征值方法计算SSVsvmax=10*log10(max(sigma(ssg,w);%直接计算最大的奇异值semilogx(w,svmax,k:,w,perron,k-)%绘制二者的比较曲线ylabel(DB);xlabel(Rad/Sec);legend(SingularValue,Perron,3)最后得到如图6.8所示的计算结果。图6.

18、8Perron上界与奇异值的比较6.3 鲁棒控制系统的设计方法鲁棒控制系统的设计方法 6.3.1概述目前发展起来的H理论、频率加权LQG方法、LQG回路传递恢复(LQG/LTR)和综合理论可以用来进行鲁棒控制器设计。其中,H理论为鲁棒控制器提供了直观、可靠的设计过程,它能最优地满足奇异值回路的要求;频率加权LQG最优综合理论(又称为H2理论或WienerHopf理论)和LQG/LTR的设计方法虽然不是很直观,但提供了一种迭代方法来调整奇异值Bode图曲线以满足奇异值回路的整定要求;而综合理论在整定函数(或KM)时同时考虑鲁棒分析和鲁棒综合问题,作为鲁棒控制系统设计工具为用户提供了最大的灵活性。

19、表6.2列举了以上所列方法各自的优缺点。RobustControlToolbox中包含了多种设计鲁棒稳定反馈控制规律的方法,使系统满足鲁棒约束的要求 :(1)LQG回路传递恢复(相关命令lqr、ltru和ltry)。(2)H2最优控制综合(相关命令h2lqg)。(3)H最优控制综合(相关命令hinf、hinfopt和linf)。图6.9是满足求解过程的示意图,该问题也被称为小增益问题。图6.9小增益问题表6.2各种鲁棒控制设计方法的比较6.3.2H2和H设计方法H2和H综合方法是专门用于满足奇异值设计要求的鲁棒多变量反馈控制系统设计的强有力的工具。MATLAB的鲁棒控制工具箱函数h2lqg、h

20、inf和hinfopt用来计算连续系统H2和H控制规律,对于离散系统情况则可以使用dh2lqg、dhinf和dhinfopt函数。H2或H设计问题可以简单地描述为:给定系统对象P(s)的状态空间实现寻找一个稳定的反馈控制规律u2(s)=F(s)y2(s)使得闭环传递函数矩阵的范数最小上述三个问题在RobustControlToolbox中体现为(1)H2最优控制:。(2)H最优控制:。(3)标准的H控制:。其中,标准的H控制问题也被称为H小增益问题。在实际运用中,H2和H综合方法常常是结合起来使用的。首先使用H2综合理论进行系统的初步设计,然后根据初步设计得出的结果选择合适的H准则,最后运用H

21、综合理论完成最后的系统设计。整个过程可以通过所谓的单参数迭代方法来具体实现。H控制器具有以下重要的特性:(1)H最优控制中的代价函数满足。(2)由hinf计算得到的H次最优控制器与增广系统(n个状态)具有相同数目的状态变量。而由诸如hinfopt命令产生的H最优控制器最多只有n-1个状态。6.3.3奇异值回路设计:混合灵敏方法下面我们考虑图6.10所示的多变量反馈系统。为了度量该系统的多变量稳定裕度和系统动态属性,可以使用从r分别到系统三个输出e、u和y的闭环传递函数矩阵的奇异值,即(6.12)(6.13)(6.14)其中,L(s)=G(s)F(s)。图6.10多变量反馈控制系统示意图其中的矩

22、阵S(s)和T(s)分别称为灵敏函数和辅助灵敏函数。上述三个传递函数矩阵R(s)、S(s)和T(s)在鲁棒多变量控制系统设计中具有重要的作用。回路传递函数矩阵L(s)的奇异值也很重要,因为它决定了矩阵S(s)和T(s)。实际上S(s)是从干扰d到系统输出y的闭环传递函数(参考图6.10),因此S(j)的奇异值决定了扰动的衰减动态特性(6.15)其中,|W-11(j)|是期望的扰动衰减因子。将扰动衰减因子定义为频率的函数,是希望在系统不同频段定义不同的扰动衰减因子。在分别存在可加性系统扰动A和可乘性扰动M的情况下,R(s)和T(s)的奇异值Bode图可以用来度量多变量反馈设计中的稳定裕度,如图6

23、.11所示。图6.11可加性和可乘性不确定性干扰鲁棒定理1:假定如图6.11所示的系统是稳定的,不确定性A和M的初始状态为零,定义A=0,则系统失去稳定前最小稳定M(s)的大小为(6.16)我们可以对可加性不确定性A作同样的分析,并且得到A(s)与R(s)的类似结果。鲁棒定理2:假定如图6.11所示的系统是稳定的,不确定性A和M的初始状态为零,定义M=0,则系统失去稳定前最小稳定A(s)的大小为(6.17)下面可以通过如下的奇异值不等式定义稳定裕度:其中,|W2(j)|和|W3(j)|分别是系统最大可加性和可乘性扰动的预期大小。通常我们将系统所有不确定性因素的影响都写成系统虚拟的可乘性扰动M的

24、形式。这样,鲁棒控制器的设计要求可以写成(如图6.12所示)有趣的现象是图6.12的上半部分(0dB线以上)满足而图下半部分(0dB线以下)满足这是因为图6.12显示可以将i(L(j)的约束边界所代表的扰动衰减和可乘性稳定裕度作为奇异值回路的设计要求。在选择权重W1和W2时需注意,0dB线与W1的Bode图频率的交叉点必须位于0dB线与W2的Bode图频率的交叉点以下。也就是说,必须满足图6.12S和T的奇异值鲁棒控制系统的混合灵敏设计方法是一种进行多变量回路设计的直接有效的方法,尽管它只是标准鲁棒控制问题中的一种特殊情况。在混合灵敏问题中,扰动衰减的期望特性和稳定裕度期望值可以写成下面的统一

25、形式:(6.18)(6.19)混合灵敏的代价函数还具有其它特殊的性质。就鲁棒灵敏问题(参考图6.14)而言,混合灵敏的代价函数为标准的鲁棒控制问题提供了简化得多并且几乎完全等同的描述方法。可以证明,如果式(6.18)的条件稍微加强一点,即图6.13混合灵敏设计问题准鲁棒控制问题中的可以简化为下面的形式对于任意的S(s)和T(s),可以有图6.14鲁棒灵敏性问题6.3.4综合问题系统综合问题的目标是寻找稳定的控制器F(s)和对角矩阵D(s),使得(6.20)一个系统综合问题可以描述为如图6.15所示的迭代过程。(1)假设D(s)=I,使用H控制设计方法(hinf.m)将找到一个使代价函数最小的F

26、(s)。图6.15综合问题的D-K迭代过程(2)固定F(s)不变,使用ssv命令寻找使代价函数最小的对角矩阵D(s)。(3)使用曲线拟合方法(fitd.m)找到第(2)步得到的最优矩阵D(s)的低阶有理近似描述。(4)如果代价函数小于1,则迭代过程停止,否则回到第(1)步重新执行。综合问题从本质上可以分解为两个不同的优化问题。对于固定的D矩阵,该问题变成标准的H设计问题(通过hinfopt函数计算)。而对于固定F(s)的情况,该问题就变成寻找一个稳定的D(s)来满足代价函数在每一频率处的最小性要求(相关的函数包括ssv、psv、perron和muopt等)。下面的一段程序将对一个简单的系统采用

27、综合方法进行鲁棒控制器的设计。%被研究对象的系统参数a=2;b1=.1,-1;b2=-1;c1=1;.01;d11=.1,.2;.01,.01;d12=1;0;c2=1;d21=0,1;d22=3;tss=mksys(a,b1,b2,c1,c2,d11,d12,d21,d22,tss);w=logspace(-2,1);%进行H最优设计gam0,sscp0,sscl0=hinfopt(tss);mu0,logd0=ssv(sscl0,w);%综合的第一次迭代计算(D为常值矩阵)ssd1,logd1=fitd(logd0,w);gam1,sscp1,sscl1=hinfopt(augd(tss,

28、ssd1);mu1,deltalogd=ssv(sscl1,w);%综合的第一次迭代计算(D为一阶矩阵)ssd2,logd2=fitd(logd1+deltalogd,w,1);gam2,sscp2,sscl2=hinfopt(augd(tss,ssd2);%显示计算的结果loglog(w,max(sigma(sscl2,w)/gam2,w,ssv(sscl2,w)/gam2);6.3.5双线性变换与鲁棒控制系统设计在进行系统鲁棒控制器设计的过程中,双线性变换bilin.M有时会很有用。使用该命令,可以消除某些增广系统中内在的病态性,利用闭环系统的主导极点进行控制系统设计。在H混合灵敏问题中,

29、如果增广系统有虚轴上的极点或零点,如果可以设计有效的鲁棒控制器,则该控制器在相应的虚轴位置具有临界稳定的闭环极点。对于更为一般的情形,如果P12(s)和P21(s)具有虚轴零点,包括由于P(s)的状态空间实现的矩阵D12或D21不满秩而导致的处的零点,也会发生类似的问题。实际上,上述问题将会导致决定H控制器的方程奇异点。这时,鲁棒控制箱函数hinf和dhinf将会产生警告消息。使用双线性变换可以有效地解决以上问题。虚轴上的零极点可以通过对系统进行双线性变换加以消除,待控制器设计完成后,再通过逆变换,就可以得到原来系统的鲁棒控制器。当然,这时得到的H控制规律可能是次最优解。通过双线性变换,H理论

30、也可以用来控制系统的暂态行为,如上升时间、阻尼比和稳定时间等等。这点在了解双线性变换的原理后自然可以明白。双线性变换通过下面的方程将s平面上的点映射到平面:(6.21)其中,p1和p2分别是s左半平面圆周的直径上的两个端点,它被映射到平面的虚轴。而相应的逆变换为(6.22)图6.16显示了双线性变换条件下A、B和C在两个不同平面上的对应区域。从图中可以看出,双线性变换具有如下的特点:(1)s平面上的圆周边界映射到平面的虚轴上。(2)s平面上的虚轴映射到右半平面上的圆周上。(3)A、B和C区域的点映射到平面所对应的区域。图6.16虚轴极点的双线性变换双线性多变量前向和逆变换是变换的特殊情况,它可

31、以通过下面的状态空间形式来实现(6.23)现在如果系统在s平面具有虚轴极点,双线性变换将这些点映射到平面上以-(p1+p2)/2为中心的圆周上。可以证明,双线性变换中的p1参数决定了在s平面上闭环系统的主导极点的配置。使用双线性变换设计鲁棒控制器的过程可以归纳如下:(1)从系统模型框图中独立出系统的不确定性模块,建立H鲁棒控制系统框图。(2)通过双线性变换将s平面上的系统映射到平面上。(3)针对转换后的系统设计H鲁棒最优控制器(即求解。(4)通过双线性逆变换将设计好的控制器映射回s平面。(5)返回步骤(1)迭代计算双线性变换的p1参数,直到系统的动态属性满足设计要求。6.4 鲁棒控制系统设计实

32、例鲁棒控制系统设计实例 6.4.1二阶系统的经典回路设计与H综合设一个二阶系统G(s)在20rad/s处具有0.05的阻尼。为该系统设计控制器使系统的频率响应Bode图如图6.17所示。在50rad/s以下,我们希望补偿器的回路传递函数奇异值位于实线以上,以使系统具有良好的干扰收敛性。在200rad/s以下,我们则希望补偿器的回路传递函数奇异值位于实线以下,以使系统具有较大的稳定裕度。图6.17系统的经典控制设计可以分解成以下几个步骤(如图6.18所示):(1)加入速率反馈以提高系统阻尼比。(2)为满足系统高频特性设计控制器或调整控制器参数(频率裕度等)。(3)为满足系统低频特性设计控制器或调

33、整控制器参数(扰动衰减、DC增益等)。经典控制设计的结果如图6.19所示。图6.18经典回路设计框图图6.19经典回路设计结果的频率响应Bode图下面介绍使用H方法来为系统设计控制器。首先利用数值鲁棒的描述符二阶Riccati公式计算所谓H小增益问题。在这个例子中,系统的频率设计要求可以用两个权重描述:图6.20显示了=1的情况,而图6.21显示了其它不同值的结果。很明显,=3.16将达到最优值。W1的参数将是唯一需要迭代计算的参数。我们可以利用鲁棒控制工具箱中的hinfopt完成这一迭代计算的工作。以下是具体的程序代码:nug=400;dng=12400;ag,bg,cg,dg=tf2ss(

34、nug,dng);%将系统传递函数转换成状态空间形式ssg=mksys(ag,bg,cg,dg);%建立系统的分层数据结构描述w1=2.5e-51.e-21;0.01*4.e-24.e-11;w2=;w3=100;0040000;TSS=augtf(ssg,w1,w2,w3);%创建增广系统ssf,sscl=hinf(TSS);%设计H控制器图6.20二阶系统设计的H加权方法图6.21二阶系统的H结果下面显示的是程序执行后MATLAB命令窗口的输出信息,它对应于=1时的H控制规律的计算。Computingthe4-blockHinfoptimalcontrollerusingtheSLCloo

35、pshifting/descriptorformulaeSolving for the Hinf controller F(s)using U(s)=0(default)Solving Riccati equations and performingHinfinityexistencetests:1.IsD11smallenough?OK2.Solvingstatefeedback(P)Riccati.a.NoHamiltonianjwaxisroots?OKb.AB2*Fstable(P=0)?OK3.Solvingoutputinjection(S)Riccati.a.NoHamilton

36、ianjwaxisroots?OKb.AG*C2stable(S=0)?OK4.maxeig(P*S)1?OK-alltestspassedcomputingHinfcontroller.DONE!-如果要设计最优H控制规律,则可以将上述程序的最后一行替换成rhoopt,ssf,sscl=hinfopt(TSS,1);下面显示的是迭代的输出结果:NoGammaD11=0S-ExistS=01am(PS)1C.L.-11.0000e+000OKOKOKOKOKOKSTAB22.0000e+000OKOKOKOKOKOKSTAB34.0000e+000OKOKFAILOKOKOKUNST43.00

37、00e+000OKOKOKOKOKOKSTAB53.5000e+000OKOKFAILOKOKOKUNST63.2500e+000OKOKFAILOKOKOKUNST73.1250e+000OKOKOKOKOKOKSTAB83.1875e+000OKOKFAILOKOKOKUNST93.1563e+000OKOKOKOKOKOKSTAB6.4.2双积分系统的H鲁棒设计在实际工程中经常会遇到包含双积分器环节的系统,该系统可以通过鲁棒混合灵敏控制器加以镇定。然而,由于双积分会给系统带来虚轴极点,因此在设计过程中需要结合双线性变换。设计步骤如下:(1)对双积分器系统对象G(s)=(ag,bg,cg,

38、dg)进行式(6.11)的双线性变换,其中p2=,p10。(2)对转换后的系统设计标准的混合灵敏H控制器。(3)通过双线性逆变换将控制器映射回F(s)。例如,某个惯性系统的传递函数为其中,J=5700表示系统的转动惯量。系统设计的要求是寻找一个具有10rad/s带宽的稳定控制器F(s)。该混合灵敏问题可以描述为(6.24)虚轴极点的缺陷可以通过双线性变换加以解决,但在系统无穷远处仍然具有两个零点,该零点也位于虚轴上。我们可以通过巧妙设计权重以避免这个问题该双微分器使得系统在无穷远处仍然是满秩的,而且作为辅助灵敏加权函数将系统带宽约束到10rad/s处。我们将如下的二阶W1的权重作为系统设计的调

39、节参数:相关的参数设置如下:=100:过滤器的DC增益(控制扰动的衰减过程)。=2/3:高频增益(控制系统的最大超调量)。c=3:过滤器的穿越频率。1,2=0.7:拐角频率处的阻尼比。具体设计程序代码如下:ag,bg,cg,dg=tf2ss(1/5700,100);%进行双线性变换ag0=ag+0.1*eye(size(ag);w2=;w3=100;00100;beta=100;alfa=2/3;w1c=3;zeta1=0.7;zeta2=0.7;w1=beta*alfa2*zeta1*w1c*sqrt(alfa)w1c*w1c;beta2*zeta2*w1c*sqrt(beta)w1c*w1

40、c;ssg=mksys(ag0,bg,cg,dg);TSS=augtf(ssg,w1,w2,w3);sscp,sscl,hinfo=hinf(TSS);acp,bcp,ccp,dcp=branch(sscp);acl,bcl,ccl,dcl=branch(sscl);%进行双线性逆变换acp=acp-0.1*eye(size(acp);dinteva%计算时域和频域响应dintplt%绘制相关图形最终的计算结果如图6.22所示。图6.22双积分系统的H控制器设计结果6.4.3弹簧振动系统的双线性变换与H鲁棒控制假设图6.23所示为弹簧振动系统,下面为该系统设计H鲁棒控制控制器。图6.23弹簧振

41、动系统的示意图无阻尼弹簧振动系统的传递函数可以写成其中,质量m1、m2和弹性系数k的正常值设为1.0,存在不确定性因素,同时由于测量信号与控制信号分别位于两个不同的弹簧振子上,使得该系统存在很大的时间延迟,这些因素的存在使得该系统不大容易被控制。系统设计的目标是寻找控制器满足:(1)当弹性系数在0.5与2之间变化时保持系统的稳定。(2)第二个弹簧振子的脉冲响应的稳定时间大约为15s。(3)满足合理的控制能量要求。整个系统的设计框图可以用图6.24表示。弹性系数的正常值设为1.25,不确定性(1)通过参数进行缩放。同时,通过另一个加权参数限制控制信号的大小。形成的H小增益问题为:该问题的求解目标

42、是使控制能量1/最小并使系统鲁棒性最大。当通过减小1/使控制能量增大时,可实现的最大鲁棒性将增加。这一平衡关系可以通过图6.25来说明。图6.24弹簧振动系统的H鲁棒控制问题框图系统的稳定时间自然可以通过双线性变换参数p1来控制。在这个例子中,双线性变换参数p1与稳定时间之间的关系可以表示为由Ts15可以计算得到闭环系统的主导极点的实部为p1n-0.3。而参数p2=-100比p1大两个数量级(|p|应大于控制系统的带宽)。图6.26中显示了p1=-0.35,p2=,=0.01时的设计结果。从图中可以看出,该设计参数可以满足所有的系统设计要求。图6.25控制能量与系统鲁棒性之间的平衡关系图6.2

43、6闭环系统的脉冲响应曲线(稳定时间Ts15s)6.4.4弹簧振动系统鲁棒控制器的综合方法上一节中由Wie和Bernstein提出的弹簧振动系统也可以通过综合方法来设计系统的鲁棒控制器。其控制目标是在满足稳定时间约束Ts=15s,并且m1、m2和k同时发生变化的前提下,使系统的多变量稳定裕度(MSM)最大。H设计的直观描述为:首先,将参数m1、m2和k的可加性不确定性构造抽象出来,然后作为H小增益问题进行求解。图6.27结构奇异值(二次迭代)图6.28对角缩放矩阵D(s)和曲线闭合读者可以参考6.3.4节的程序流程编写本例的综合设计程序。具体程序的设计过程留给读者练习。图6.29显示了第一个弹簧振子的脉冲响应曲线。最终控制器的设计参数分别为p1=-0.4,p2=-100。第二个弹簧振子的稳定时间满足15s的设计要求。系统在系统参数(m1、m2和k)同时发生23%的变化和存在高频输入噪声(0.001sin(100t))的情况下仍然能够保持鲁棒稳定性。图6.29控制系统的脉冲响应曲线(稳定时间大约为15s)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁