惠州市名校2019-2020学年数学高一第一学期期末监测模拟试题.pdf

上传人:奔*** 文档编号:91494357 上传时间:2023-05-27 格式:PDF 页数:47 大小:6.29MB
返回 下载 相关 举报
惠州市名校2019-2020学年数学高一第一学期期末监测模拟试题.pdf_第1页
第1页 / 共47页
惠州市名校2019-2020学年数学高一第一学期期末监测模拟试题.pdf_第2页
第2页 / 共47页
点击查看更多>>
资源描述

《惠州市名校2019-2020学年数学高一第一学期期末监测模拟试题.pdf》由会员分享,可在线阅读,更多相关《惠州市名校2019-2020学年数学高一第一学期期末监测模拟试题.pdf(47页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一数学期末模拟试卷注意事项:1 .答题前,考生先将自己的姓名 准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3 .请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4 .保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题1 .已知点A(3,O),8(0,3),M(1,0),。为坐标原点,RQ分 别 在 线 段 上 运 动,则的周长的最小值为()A.4 B.5 C.2石 D.VS2.设机,是两条不同的直

2、线,体是三个不同的平面,给出下列四个命题:若机/,/,则m H n;若a/4/y,?J _ a则 z_ L y ;若z_ L a,/a,则 m 若。,/,尸,九则/广,其中正确命题的序号是()A.和 B.和 C.和 D.和3 .若正数私满足2机+=1,则 工+,的最小值为m nA.3 +2 0 B.3 +/2C.2+2 0 D-34.如图,在三棱柱ABC-A4G中,侧棱垂直于底面,底面是边长为2 的正三角形,侧棱长为3,则A4与平面A4G所成的角为()5,直 线 人/2,4的斜率分别为占,h,右,如图所示,则()A.%k2V%C.匕 v&v%B.42 V A 3&D.&V%左36.设函数f(x

3、)=X,对任意X e 1.+,iXmx)+mf(x)()恒成立,则实数m的取值范围是()A.m 0 B.m 0 C.m-1 D.m 0,且;中 I)在4 上的最大值为4,且函数虱、)=(m)a、在让是减函数,则实数m的取值范围为()A.m 1 B.m 0 D.m 013.已知集合A=x卜1 x 2,B=x|0 x 3,则A U B-()A.I 1.B.14.在AABC中角ABC的对边分别为A.B.c,c o s C=,且 acosB+bcosA=2,则AABC面积的最大值为0A.;5 B.述 C.迪 D.在99215.已知函数/(x)=-2+7(。且。H i)的图象恒过定点尸,若定点P在幕函数

4、g(x)的图像上,则塞函数g(x)的 图 像 是()二、填空题16.设 S,表示等比数列%(N*)的前项和,已 知 粤=3,则 萼=.17.函数/(x)=H 3 x-l|2-4|3 T|+l(昉()在R上有4 个零点,则实数m的 取 值 范 围 是.18.在平行四边形ABCD中,已知AB=2,AD=1,ZBA=60,E为 CD的中点,则=19.(5 分)已 知 f (x)是定义域为R的偶函数,当 x O 时,f (x)=X2-4X,那么,不等式f (x+2)人成立,求实数A的最大值.23.已知圆C的方程是(x-1)2+(y-1)z=4,直 线 I 的方程为y=x+m,求当m为何值时,直线平分圆

5、;直线与圆相切.24.已知等比数列%的前项和为S“,且 一+=0,S6=.q a?c i y 3 2(1)求数列 凡 的通项公式;(2)若 勿=-lo g2,cn=abn,求数列%的前 项和 7;,.25.已知数列 4 的前项和为,等差数列也 满足(1)分别求数列 凡,bn的通项公式;(2)若对任意的,恒成立,求实数k 的取值范围.【参考答案】一、选择题1234567890BAAADDCC1 0.C1 1.D1 2.A1 3.A1 4.D1 5.D二、填空题1 6.71 7.(3,4)1 8.-221 9.(-7,3)三、解答题2 0.(1)弦长为 4;(2)02 1.(1)详略;(2)生 旦

6、.72 2.(I)q=&;(I I)略;(I I I)上的最大值为12 3.(1)m=0;(2)m=2&。24-4=击;T”=2一 竽 .2 5.(1)由 得,得 ,又 a2=3,a,=1 也满足上式,an=3e;-3 分;-6分对eN*恒成立,即对恒成立,8分令,当 时,当 时,,.-12 分-10分高一数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名 准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草

7、稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题1.一组数X,龙2,七,当平均数是;,方差是d,则另一组数8+J LF+3,,6当+0的平均数和方差分别是()A.后,52C.岳+杉IB.V3x+V2,3.v2D.岳+而?+2湿+22.在R上定义运算:x(8)y=x(l-y),若I r e R使得(x-a)(x+a)l成立,则实数a的取值范围是(C.(3LJ-,+82B.30 0,-2D.鸣,+0 03.在平面直角坐标系中,已知角a始边与X轴非负半轴重合,顶点与原点重合,且戊终边上有一点P坐标为(一2,3),贝I 2sina+cosa

8、=()A-fR xD/1 3.-13r4713V.-13D.14.下列函数中,既不是奇函数又不是偶函数的是()A.y=3xB.y=2x-2 xC.y=x2+x1 X+1D.y=In-%15.己知函数,f(x)=sin(a)x+0)(O fy 1 2,3 G N*,()0%),图象关于y轴对称,且在区间71 71于5上不单调,则。的可能值有()A67个B.8个C.9个D.10 个已知直线 I:y=kx+2(k R),圆 M:(x-1)2+y2=6,圆 N:x2+(y+1)三9,则()BCD7I必与圆M相切,I必与圆M相交,I必与圆M相切,I必与圆M相交,I不可能与圆N相交I不可能与圆N相切I不可

9、能与圆N相切I不可能与圆N相离下列函数中,即是奇函数又是增函数的为(y=ln x3B.D.)y=-x-Iy=xAC8设%片表示两个不同平面,”表示一条直线,下列命题正确的是()A.若加/a ,a/月,则 m l 1 pB.若 m l la ,m l I p,则 a/月C.若加_L a,a,则/%/?D.若机_La,m l 0,则 a/R9,若 1,2q 4.1,2,3,4,5 ,则集合 A 的个数是()A.8 B.7 C.4 D.310.已知:=(2,1),Z?=(-l,l),则“在/,方向上的投 影 为()A.一旦 B.叵 C._正 D.好2 2 5 511.数列E的通项公式是a.=(n+2

10、),,那么在此数列中()A.a?=a8 最大 B.a8=ag 最大C.有唯一项物最大 D.有唯一项a7最大12.下列四组中的/(x),g(,表示同一个函数的是().A./(x)=l,g(x)=x B.f(x)=x-1,g(x)=-1XC./(x)=x2,g(x)=(4)4 D.f(x)=x3,g(x)=1 3.若 A4BC 的内角 A R C 满足6s山A=4siB=3siC,则 cos 8=()A.叵 B一4 4r 3VB n HV*-U.16 161 4.函数/(x)=Asin(0,啰 的 部 分 图 象 如 图 所 示,则。=()71C.D 一 工,31 5.函数y=4的图像与函数y=2

11、sin%x(-2 x 0,y 2,+3的解集为.18.在平面直角坐标系中,角 a 的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点P(-V 3,l),则 sin(4-a)=.1 9 .已知函数 f(x)=酎 C 则 f(2+logz3)=./(x +1),x 4三、解答题2 0 .已知数列 4 满足q+2%+34+nan=n2(n e N*).(1)求数列 q 的通项公式;(2)若 么=L(e N ),7;为数列出也+J 的前项和,求证:7;,/平面PAC;(2)求证:。尸_ L 平面ABC;(3)求三棱锥。-ABC的体积.25 .某租赁公司拥有汽车1 0 0 辆.当每辆车的月租金为30

12、 0 0 元时,可全部租出.当每辆车的月租金每增加 5 0 元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费1 5 0 元,未租出的车每辆每月需要维护需5 0 元.(I)当每辆车的月租金定为360 0 元时,能租出多少辆车?(I I)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【参考答案】一、选择题1B2A3C45C6D7.C8.D9.A1 0.A1 1.A1 2.D1 3.D1 4.B1 5.D二、填空题1 6.o,3 2/2 J1 7.(-o o,-l)(3,+o o)三、解答题20.21.22.23.24.25.2 n 1(1)%=-.(2)证明略n(D

13、 1 0+1 函 海 里;(2)速度为(2 0 +1)海里/小时(1)x=2,y=9;S 甲 2 言,S/=2,乙更稳定;(3)(1)0.0 2;(2)2 2.5;(3)1 0 8 0 0 元(1)略(2)略(3)6(1)8 8 (2)当 时,/1)最大,最大值为元.高一数学期末模拟试卷注意事项:1 .答题前,考生先将自己的姓名准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2 .选择题必须使用2 B 铅笔填涂;非选择题必须使用0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3 .请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4

14、 .保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题1.已知平面向量a,满足1=1,忖=2,且(a +)_ La,则”与的夹角为()2,函数y=2 l o g 4(1 x)的图象大致是4.2 0 1 8 年科学家在研究皮肤细胞时发现了一种特殊的凸多面体,称 之 为“扭曲棱柱”.对于空间中的凸多面体,数学家欧拉发现了它的顶点数,棱数与面数存在一定的数量关系.凸多面体顶点数棱数面数三棱柱695四棱柱81 26五棱锥61 06六棱锥71 27根据上表所体现的数量关系可得有1 2 个顶点,8个面的扭曲棱柱的棱数是()A.1 4 B.1 6 C.1 8 D.2 05.若

15、非零向量”,满足1。1=1 切,向量力+6与b垂直,则 a与匕的夹角为()A.1 5 0 B.1 2 0 C.6 0 D.3 0 6.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1 0 0 0 元,存入银行,年利率为2.2 5%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.0 1%.如果将这1 0 0 0 元选择合适方式存满5年,可以多获利息()元.(参考数据:1.0 2 2 54=1.0 9 3,1.0 2 2 55=1.1 1 7,1.0 4 0 14=1.1 7 0,1.0 4 0 15=1.2 1 7)A.1 7 6B.1

16、0 0C.7 7D.8 87.设定义在R上的函数x),对于给定的正数P,定义函数力,则称函数(X)为“X)的 P界函数”.关 于 函 数/)=父 一2%-1的“2界函数”,则下列等式不成立的是()A-/2/(O)=/2(O)B./(1)=/2(1)C./2/(2)=/2(2)D.力 3)=/力(3)JT8.要得到函数v=sin(7-3 x)的图像,只需要将函数y=sin 3 x的 图 像()47inA.向右平移一个单位 B.向左平移一个单位4 4C.向右平移专个单位 D.向左平移展个单位9,已知函数/(x)=x 3)+3 在R上单调递减,则实数。的取值范围是()地1+1)+1,x 0,1 0.

17、在A B C中,A O为8 C边上的中线,E为A 3的中点,则 仍3 1 1 3A.-A B-A C B.-A B-A C4 4 4 41 4.某四棱锥的三视图如图所示,该四棱锥的表面积是C.AB+AC D.4 411.已知函数/(x)=sin(69x+0,(p 称轴,且/(x)在(书)单调,则外的最大值为10 30A.11B.C.7D.12.在平面上,四边形ABC。满足AB=0 C,A.梯形 B.正方形 C.13.莱茵德纸草书(Rhind Papyrus)是世界100磅面包分给5个人,使每人所得成等差数列,的1份为5 f IA.,磅 B.瓦磅 C.-A B+-A C4 4),=一工为了。)的

18、零点,尤=工 为y=/0)图象的对4 495A C B D =0,则四边形ABC。为()菱形 D.矩形二最古老的数学著作之一,书中有一道这样的题目:把且使较大的两份之和的;是较小的三份之和,则最小IOr t 20 分y磅 口.豆磅俏(左,祝曲A.32B.16+16 及C.48D.16+32 亚15.在、;中4A.9二、填空题M 是B C 的中点,AM=1,点P 在AM 上且满足/=21P Mi则APB+P C,于(4 4 4B.J C.3 D.9)16.函数y =#s in xco s x+co s2 x 的值域为17.设 函 数/。)=如2 一2,叫一4,若对于xe 2,3,/(x)0,b

19、0,c 0,且 abc=l.(1)证明:(l+a)(l+Z?)(l+c)8;(2)证明:y/a+4b+y/ca b c21.平面内给定三个向量”=(3,2),/=(-1,2),c=(4,l).(I)求满足a=mb+nc的实数加,”.(2)若 d 满足(d c)/(a+),且|d C|=A/5,求 d 的坐标.22.近年来,国产手机因为其炫酷的外观和强大的功能,深受国人喜爱,多次登顶智能手机销售榜首.为了调查本市市民对某款国产手机的满意程度,专卖店的经理策划了一次问卷调查,让顾客对手机的“外观 和“性能”打分,其相关得分情况统计如茎叶图所示,且经理将该款手机上市五个月以来在本市的销量按月份统计如

20、下:外观性能9 8 5 3.7.3.9 8 7.80 0 1 m 6-8 8 692 5 5 6.月份代码t12345销售量y(千克)5.65.766.26.5(1)记“外观”得分的平均数以及方差分别为K,S;,“性能”得分的平均数以及方差分别可,.若 吊=亍 2,求茎叶图中字母m 表示的数;并计算S;与.(2)根据上表中数据,建立关于的线性回归方程,并预测第6 个月该款手机在本市的销售量.附:对于一组数据(j y)i=12 其回归直线9=R +方的斜率和截距的最小二乘估计公式分别为:B 一 刃K,u-n2a=y-b i5 5参 考 数 据:Z&T)(X 一歹)=23;Z(4 T)=10i=l

21、 i=23.根据下列条件,求直线的方程(1)求与直线3x+4y+1=0平行,且过点(1,2)的直线I 的方程.(2)过两直线3x2y+1=0和 x+3 y+4=0 的交点,且垂直于直线x+3y+4=0.24.已知函数 x)=2百 sinxcosx+2cos2 x+-1.(1)求/(x)的单调递增区间;jr 1 3万(2)若函数g(x)=x)-左 在 区 间-二,F上有三个零点,求实数上的取值范围.o 1225.已知=(sinx,cosx),=(sinx,sinx),函数/(x)=/?.(1)求/(x)的对称轴方程;(2)若对任意实数x e 多,不等式外灯-加2恒成立,求实数,的取值范围.【参考

22、答案】一、选择题1.C2.C3.B4.C5.B6.B7.B8.B9.A10.A11.B12.C13.D14.B15.A二、填空题16._ L 229217.y,2)18.19.856三、解答题20.(1)略(2)略.C Q21.(1)/=-,=;(2)(3,-1)或(5,3).22.(1)?=2,s:=78.6,s;=58.O;(2)回归方程为$=O.23f+5.3I;预测第6 个月该款手机在本市的销售量为6.69(千 台).23.(1)3x+4y-11=0(2)3 x-y+2=024.(1)kn +(&e Z)(2)k g2 X,且实数a b c 0,满足f(a)f(b)f(c)0,若实数是

23、函数 R x)的一个零点,那么下列不等式中不可能成立的是()A.x0 a C.x0 b D.x0 c4 .若非零向量”,b满足l l=l6,向量2 a +。与b垂直,则 a与匕的夹角为()A.1 5 0 B.1 2 0 C.6 0 D.3 0 5 .已知A4BC中,A,B,C的对边分别是“,b,c,且b =3,c =36,B =3 O ,则 AB边上的中线的长为()c 3 3币 门3 3币C.7 或-D.7或 二2 2 4 26,若函数&)=lo g。3(5 +4 x-/)在区间(a T,a +1)上单调递减,且b =lo g20.1,c =2。三则()A.c b a B.b c a C.a

24、b c D.b a c7 .若/,?是两条不同的直线,加垂直于平面a,贝 1 是 /a”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8 .若,0,则下列结论不正确的是()a bA.cr b1 B.ah b C.y D.a +09 .某几何体的三视图如图所示,则该几何体的体积为()正视图 例视图D.210.设函数/(X)=T 0 ./(-2)+/(lo g21 2)=(),X N 1,A.3 B.6 C.9 D.1211.若直线/:办+b=1 与圆。:尤 2 +9=1 有两个不同的交点,则点P(a,b)圆C 的位置关系是()A.点在圆上 B.点在圆内

25、C.点在圆外 D.不能确定12.函数千(x)=+lg(1+x)的定义域是()1-xA.(8,1)B.(1,+)C.(1,1)U(1,+)D.(8,+oo)1 3.若函数f(x)是定义在R上的偶函数,在(-8,0上是减函数,且 f(2)=0,则使得f(x)V 0 的 x 的取 值范围是()A.(8,2)B.(2,4-00)C.(-8,-2)U(2,+)D.(-2,2)14.已知等比数列。的公比为正数,且a3-a91曲A.2 B.2 C.15.下列函数中,图象的一部分如图所示的是2 a;,aLl,则力 一)6D.2()y=sin 2x-I 67 1y=cos 2x-I 6C.y=c o s 4 x

26、-J D.二、填空题16.如图,在三棱锥P A B C 中,PA_L平面ABC,AB AC,若过A作 A D,BC 于点D,连接PD,那么从P,A,B,C,D这五个点中任取三点共能构成 个直角三角形.17.设扇形的周长为4。,面积为工加2,则 扇 形 的 圆 心 角 的 弧 度 数 是.18.设等差数列a,的前项和为S”,若S,-2,S,“=0,5,向=3,则 加=19.过 P(1,2)的直线/把圆.d+丁一4%5=0 分成两个弓形,当其中劣孤最短时直线/的方程为三、解答题27r20.在ABC 中,角 A,B,C 的 对 边 分 别 为b,c,B.Z C =,a=6.3(1)若 c=1 4,求

27、 sinA 的值.(2)若ABC的面积为3 3,求 c 的值.21.已知 A=x|0,3 0,|同|)的 图 象 与)轴的交点为(0-7 3),它 在 轴 右T T侧的第一个最高点和第一个最低点的坐标分别为(尤0,2)和(x+万,-2).(1)求/(X)解析式及看的值;(2)求/(*)的单调增区间;T T(3)若 x e 0 q 时,函数g(尤)=2/(无)+1 +m 有两个零点,求实数,的取值范围.24.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能

28、低于51元.当一次订购量为多少个时,零件的实际出厂单价恰降为51元?设一次订购量为X个,零件的实际出厂单价为尸元.写出函数尸=f(x l的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)25.已知圆。:x2+y?=4 与圆 8:(x+2)2+(y 2)2 4.(1)求两圆的公共弦长;(2)过平面上一点。(为,%)向圆。和圆8 各引一条切线,切点分别为G。,设 弱 =2,求证:平面上存在一定点M 使得。到 M 的距离为定值,并求出该定值.【参考答案】一、选择题1.D2.C3.D4.B5.C6.

29、D7.B8.C9.B10.C11.C12.C13.D14.B15.D二、填空题16.817.218.519.%-2y+3=0三、解答题320.(1)V3;(2)2A/13.1421.A c 3 =x l x 2 22.(1)(2)1266 52 3.(1)/(x)=2 si n(2 x-01,x0;(2)也一言,+,ksZ;(3)(-5,-2G-1 .:6024.(1)550;(2)P=/(x)=6 2-5051(0 x 100)(100 x550)25.(1)2 7 2(2)3高一数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名 准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴

30、区。2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题1.在 A B C 中,角 A、B、C 的对边分别为 a、b、c,若(a-c-co s B)-s in B =(b-c-co s A s in A,则 A B C 的形状为。A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形2.平 面 a 过正方体A B C D-A B C D 的

31、顶点A,a 平面C B D ,a D平面A B C D=m,a D平面A B B A=n,则 m,n所成角的正弦值为()A.亘 B.五 C.叵 D 2 2 3 33.三棱锥P/归。,2 4 =依=尸。=仍,4 3 =10,3。=8,。4=6 则二面角/4。8 的大小为()A.90 B.60,C.45 D.30 x 2 1,4.已知变量X,y满足约束条件贝。2=2%一丁取最大值为()x+y-2 0 在区间 1,5 上有解,则。的 取 值 范 围 是()23),23 J 、(23-A.I ,4-o o I B.,1 0.(1,+0)D.9.已知;为非零向量,则,力0”是 7与力夹角为锐角”的()A

32、.充分而不必要条件C.充分必要条件B.必要而不充分条件D.既不充分也不必要条件10.要得到函数y=sin12x-g的图象,只需将函数y=s i”2 x的 图 象()A,向左平移夕个单位6TTB.向右平移下个单位0IT7TC,向左平移彳个单位 D.向右平移彳个单位3 311.已函数/(x)=sin(8+0)(0 O,M|x+2,10 x)(xO),贝lf(x)的最大值为()A.3 B.4 C.5 D.6二、填空题16.已 知 ABC,ZB-1 3 5,AB=2啦?BC=4,求AB AC,1 7.函数/(九)=1+4511114(:0521,冗 TT,则.f(%)的最小值为18已知方程(f2 x+

33、加Xf-2、+)=的四个根组成一个首项为:的等差数歹U,则 m-A =.r r19.已知向量a=(cos仇sinS),0=(1,6),则。一人的最大值为.三、解答题20.已知数列%满足。+2%+3%+n a=H2(G N).(1)求数列%的通项公式;(2)若 =一 L(e N*),T.为数列他 J 的前项和,求证:T“0M 0,0 “|/(x)图象中相邻两条对称轴间的距离为:,且图象上一个最高点为(展,2).(I)求“X)的解析式和单调递增区间;(I I)先把函数/(x)的图象向右平移专个单位长度,再把所得图象上各点的横坐标伸长到原来的2 倍(纵坐标不变),得到函数g(x),求 g(x)在区间

34、 py 上的值域.23.为了及时向群众宣传“十九大”党和国家“乡村振兴”战略,需要寻找一个宣讲站,让群众能在最短的时间内到宣讲站.设有三个乡镇,分别位于一个矩形MNPQ的两个顶点M、N及 P、Q的中点S处,M N=1 0&k m,N P =5&k m,现要在该矩形的区域内(含边界),且 与 趴 N等距离的一点0 处设一个宣讲站,记 0 点到三个乡镇的距离之和为U k m).(1)设N0M N=x(r a d),将 L 表示为x 的函数;(2)试 利 用(1)的函数关系式确定宣讲站。的位置,使宣讲站。到三个乡镇的距离之和。切 最小.24.已知半径为5 的圆的圆心在x 轴上,圆心的横坐标是整数,且

35、与直线 相切.(1)求圆的标准方程;(2)设直线 与圆相交于A,B两点,求实数。的取值范围;(3)在(2)的条件下,是否存在实数。,使得弦A 8 的垂直平分线/过点。25.设 f(x)=(x +l)(x+4),x -l,g(x)=-(x +l)(x+4),-4 x 9时(如k=20),y =kx与f(x)的图象 好像”只有一个交点,但实际上这两个函数有两个交点,请证明:当k 9时,丫 =1与仇)两个交点.(3)若方程|卜+1)卜+4)|=1国 恰 有4个实数根,请结合(1)(2)的研究,指出实数k的取值范围(不用证明).【参考答案】一、选择题1.D2.A3.B4.05.B6.A7.D8.A9.

36、B10.B11.B12.B13.C14.B15.D二、填空题16.1617.-419.3.三、解答题2 一 120.(1)%=-.(2)证明略n2 1.直线方程为3x-4y+10=()或 x=222.(I)f (x)=2sin(4xH ),增 区 间 一k冗-,k ji4,k JZ(II)1,2.6 _2 6 2 12 J23.(1)=1 2 1 _ 5 ta n x +5 ,(0%0,方 0),若 加/“则一的最小值为a bA.12 B.10+273 C.15 D.8+4 6jr2.设 0 。,若x,=sin a,x+1=(sina)r-(n=1,2,3,),则数列 当 是()A.递增数列

37、B.递减数列C.奇数项递增,偶数项递减的数列 D.偶数项递增,奇数项递减的数列3.已知0 。1,0 c Z?-B.-b+a c+a b b+aC.log/?a ac4.在 AA8C中,设角 A,B,C 的对边分别为 a,b,c.若/c o s Asin 8=A?sin Acos8,则 AA8C是()A.等腰直角三角形 B.直角三角形C.等腰三角形 D.等腰三角形或直角三角形5.在 AABC 中,aco$A=b c o s B,则 A4BC的形状为()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形6.老师给出了一个定义在R 上的二次函数/(X),甲、乙、丙、丁四位同学各说

38、出了这个函数的一条性质:甲:在(一与0 上函数A x)单调递减;乙:在 0,+8)上函数/(X)单调递增;丙:函数/(X)的图象关于直线光=1 对称;T:/(0)不是函数/(X)的最小值.若该老师说:你们四个同学中恰好有三个人说法正确,那么你认为说法错误的同学是()A.甲 B.乙 C.丙 D.T7,我国古代数学著作 九章算术中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的S=2(单位:升),则输入A的值为开始输入AA.6B.7C.8D.98,将函数/(x)=sin(2 x+e)+疯:os(2 x+0)(

39、)%)图象向左平移:个单位后,得到函数的图象关于点1,0)对称,则函数g(x)=cos(x+0)在 上的最小值是()c02A.B有D.-221D.-29.若将函数丁=8$2 工的图象向左平移展个单位长度,则平移后图象的对称轴为()k7i 7t/.A.x=-(攵 G Z)2 6v)k兀B.x=-2C.x=-(k e Z)2 12v 7knD.X=-21 0.直 线 由 x+y 1 =0 的倾斜角为+(k e Z)12v+亳(k e Z)xA.C.71621TB.D.冗7541 1.圆+y2-2x-8y+13=0的圆心到直线o v+y-l=0 的距离为1,贝 lja=()4A.一一33B.-4C.

40、V3D.21 2.如图,在平面直角坐标系宜万中,角。(0 4。万)的始边为工轴的非负半轴,终边与单位圆的交点T T为 A,将 0A 绕坐标原点逆时针旋转,至。8,过点8 作 x 轴的垂线,垂足为Q.记线段8 Q 的长为则函数y=/()的图象大致是()A.yB.ac.1 3.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在 区 间(3,6)内的概率为()(附:若随机变量4服从正态分布N(,r2),则P(b J +b)=68.26%,P(4 2 b v J v+2 b)=95.44%。)A.4.56%B.13.59%C.27.18%D.31.74%1

41、4.下列三角函数值大小比较正确的是197t 1471A.sm丁 cos丁54?t63几17T Uc.tan(7)tan(7)B.sin(-)tan 1431381 5.设变量x,)满足约束条件:y xx+2 y -2A.-2二、填空题B.-4C.6D.-816.已知函数/(x)=x+?a 0),若当玉,天 目1,3时,都有/&)0,a+=2,则 =:的最小值是_ _ _ _ _ _ _ _ _ _.a h三、解答题20.已知全集U=1,集合4 =卜|-4 x (,B =x m x 0时,/U)4./、/、s in24.(1)已知角。的终边经过点加(1,一2),求+a-co s【2 J5万 a2

42、的值;co s (万 +a/c j c Sin er-4co s a _(2)已知t an a=2,求 -的值.5s in t z+2co s cz25.如图所不,在平面四边形A B C D中,A D=1,C D=2,A C=(1)求 co s NC A D 的值;(2)若 C OSN B A D=-M 2,si nN CBA=H,求 B C 的长.14 6【参考答案】一 选择题1.D23456789CADCBCDC1 0.C1 1.A1 2.B1 3.B1 4.C1 5.D二、填空题11 7.-21 8.2 x y+5=O91 9.一2三、解答题20.(1)QB=x|x 3 时 5 ,A u

43、B=x|O x 5 ;(2)0 z n 2;(:21.(1)2 2;(2)5.1 0,、1 1 ,、22.(1);(2)0.723.(1)/(1)=2(2)f(x)在 R 上单调递减,证明略;(3)1 x|-x l24.(1)述;(2)5 625.(1)c o s Z C 4 P =(2)37根 一 2 或 24.高一数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名 准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答

44、案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题1.已知数列 可 的前项和为S“,若%=2,S,川=3S”对任意的正整数均成立,则%=()A.162 B.54 C.32 D.162.已知实心铁球的半径为R,将铁球熔成一个底面半径为R、高为力的圆柱,则 指=()R中抽取一个容量为n的样本,已知从高中生中抽取70人,则 为()A.3 4 5-B.-C.一2 3 4D.23.设 g(x)=In(2 +1),则 g(4)-g(3)+g(3)-g(-4)=A.-1 B.1 C.I n2D.-In24.某中学有高中生3 500人,初

45、中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生A.100B.150D.250C.2005.椭圆以X轴和y轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A.X2 2 1+V=14.B.2 9y J1 16 4=1C.2 2+/=或 二4 16x2+一4=1D.X2 2=1或2-+X2=16.已知函数f(x)=x22x2+3sinx+1 ,设f(x)在上的最大 小值分别为M、N,则M+N2X+12_的值为()A.2B.1c.0D.-17.在平面内,已知向量。=(L0),6=(0,1),c=(l,l),若 非 负 实 数 满 足+y +z=l,且p =xa

46、+2 yb+3 zc 贝U()A.|p|的 最 小 值 为 咨 B.|p|的最大值为C.|p|的最小值为g D.|p|的最大值为8.非 零 向 人 互 相 垂 直,则下面结论正确的是()A.|a|=W B.a+b =a bC.=|215.不等式(x-l)2-的 解 集 是()A.L3,j B,t-2 3C.&1)U(1,3 D_ 4 l)u(l,3二、填空题16.若函数 x)=sin2x+acos2x,xe R 的图像关于x=-三 对 称,贝 ija=_.617.函数y T o g/V r T?)的单调增区间是218.函数 x)=Asin(0 x+。)(其中A 0,。0,夕、0,1 )的图象如

47、图所示,则函数/(x)的解析式为.1 9.函数R x)的定义域为域若X l,0 A 且f(X )=f(X 2刷总有X =X 2,则称心)为单函数.例如,函数f i x 尸 2x+1(X C R)是单函数.下列命题:2函数f(x)=x-(x W R)是单函数;指数函数f(x)=2*(x R)是单函数;若R x)为单函数,xpx2 e A 且X ,x2j 则t(、X )H f(X 2);在定义域上具有单调性的函数一定是单函数.其中的真命题是_ _ _ _ _ _ _ _ _.(写出所有真命题的编号)三、解答题2 0.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,

48、为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P、种黄瓜的年收益Q与投入a (单位:万元)满足P=8 0+4 j 五,Q=1 a+1 2 0.设甲大棚的投入为 x(单位:万元),每年两个大棚的总收益为千(x)(单位:万元).(1)求千(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?2 221 .如图,在 平 面 直 角 坐 标 系 中,椭圆。:=+=1(4 0)的左、右焦点分别为耳,F2,a bP为 C椭圆上一点,且

49、 空 垂 直 于 x轴,连结P”并延长交椭圆于另一点。,设 PQ=/L G Q.(2)若 4 W X W 5,求椭圆C的离心率的取值范围.22.如图,四边形ABCD 为矩形,A,E,B,尸四点共面,且 A4BE和 A A 8 尸均为等腰直角三角形,Z B A E =Z A F B =90.D(2)若平面ABC。,平面AEBQ,AF=1,8C=2,求三棱锥A CEE的体积.2 2斤23.已知椭圆0 2+5=1 5 150)的右焦点为,离心率为a b-(1)求椭圆C的方程:(2)设过点F的直线1 交椭园C于 卜 4,N两点,若 A O M N(0为坐标原点)的面积为,求直线1 的方程.24.在 A

50、4BC中,角 A,B,C 的对边分别为a/,c,已知=逝 2(1)若 C=2 6,求 cosB的值;UUU ULflU ULI ULI(八 71 1(2)若 A8 AC=C4 C 8,求 cos13+i j 的值.25.(1)化简:;(2)若 a、/?为锐角,且,求 的值.【参考答案】一、选择题123456789BBCACAACC10.B11.D12.B13.A14.C15.D二、填空题1 6./3r1 7.(-o o,-3).(乃、1 8.y =2 si n I 4j1 9.答案:解析:对于,若f(Xl)=f(X2),则X l=X 2,不满足;是单函数;命题实际上是单函数命题的逆否命题,故为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁