《初一数学下册知识点汇总最新4篇.docx》由会员分享,可在线阅读,更多相关《初一数学下册知识点汇总最新4篇.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初一数学下册知识点汇总最新4篇初一数学下册知识点汇总 篇一 从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线(bisectorofangle)。三角形三个角平分线的交点叫做内心。 角平分线的性质 1、角平分线上的一点到角的两边距离相等。2.角的内部到角的两边距离相等的点在角的平分线上。(逆运用)三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。三角形的角平分线不是角的平分线:一个是线段,一个是射线。三角形角平分线有个有趣的性质:三角形ABC中角A的平分线为AD,则AB:AC=BD:CD.三角形的三条角平分线相交于一点,该点为三角形的内心,
2、且内心到三条边的距离相等。 3、角平分线是到角两边距离相等的所有点的集合。 中线 连接一个顶点与它对边中点的线段,叫做三角形的中线。中线的交点为重心,重心分中线2:1(顶点到重心:重心到对边中点)。中线:三角形中,连结一个顶点和它所对边的中点的连线段叫做三角形的中线。中线也是线段,一个三角形有3条中线。在一个角为30直角三角形中。60角所对应的边上的中线为斜边的一半。在一个三角形中,其一短边为斜边的一半,且这个三角形为30的直角三角行,那么,60角所对的边上的中线在此三角形中有三个等量。 图形变换的简单应用 考点一、平移(35分) 1、定义 把一个图形整体沿某一方向移动,会得到一个新的图形,新
3、图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。 2、性质 (1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动 (2)连接各组对应点的线段平行(或在同一直线上)且相等。 考点二、轴对称(35分) 1、定义 把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。 2、性质 (1)关于某条直线对称的两个图形是全等形。 (2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。 (3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。 3、判定 如果两个图形
4、的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。 4、轴对称图形 把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。 考点三、旋转(38分) 1、定义 把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。 2、性质 (1)对应点到旋转中心的距离相等。 (2)对应点与旋转中心所连线段的夹角等于旋转角。 考点四、中心对称(3分) 1、定义 把一个图形绕着某一个点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。 2、性质
5、(1)关于中心对称的两个图形是全等形。 (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形 把一个图形绕某一个点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。 考点五、坐标系中对称点的特征(3分) 1、关于原点对称的点的特征 两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P(-x,-y) 2、
6、关于x轴对称的点的特征 两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P(x,-y) 3、关于y轴对称的点的特征 两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P(-x,y) 初一下册数学知识点总结北师大版 篇二 一、同底数幂的乘法 (m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点: a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式; b)指数是1时,不要误以为没有指数; c)不要将同底数幂的乘法与整式的加法相混淆
7、,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加; 二、幂的乘方与积的乘方 三、同底数幂的除法 (1)运用法则的前提是底数相同,只有底数相同,才能用此法则 (2)底数可以是具体的数,也可以是单项式或多项式 (3)指数相减指的是被除式的指数减去除式的指数,要求差不为负 四、整式的乘法 1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。 如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。 2、多项式:几个单项式的和叫做多项式。多项式中每个
8、单项式叫多项式的项,次数项的次数叫多项式的次数。 五、平方差公式 表达式:(a+b)(a-b)=a2-b2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式 公式运用 可用于某些分母含有根号的分式: 1/(3-4倍根号2)化简: 六、完全平方公式 完全平方公式中常见错误有: 漏下了一次项 混淆公式 运算结果中符号错误 变式应用难于掌握。 七、整式的除法 1、单项式的除法法则 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含
9、有的字母,则连同它的指数作为商的一个因式。 初一下册数学重点知识点 篇三 1、整式的乘除的公式运用(六条)及逆运用(数的计算)。 (1)anam2)(am)n=(3)(ab)n = 4)am an (5)a0 (a0) (6)a-p= = 2、单项式与单项式、多项式相乘的法则。 3、整式的乘法公式(两条)。 平方差公式:(a+b)(a-b)= 完全平方公式:(a+b)2 (a-b)2 常用公式:(x+m)(x+n)= 5、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。 6、互为余角和互为补角和 7、两直线平行的条件:(角的关系线的平行) 相等,两直线平行; 相等,两直线平行; 互
10、补,两直线平行。 8、平行线的性质:两直线平行。(线的平行 9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系) 10、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义 (3)图象交点表示什么意义(4)会求平均值。 11、三角形(1)三边关系:角的关系) (2)内角关系: (3)三角形的三条重要线段: (重点)(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分) (5)全等三角形的性质: (重点)(6)等腰三角形:(a)知边求边、周长方法 (b)知角求角方法 (c)三线合一: (7)等边三角形: 12、会判
11、轴对称图形,会根据画对称图形,(或在方格中画) 13、常见的轴对称图形有:14、(1)等腰三角形: 对称轴, 性质 (2)线段 : 对称轴 ,性质 (3)角 : 对称轴 ,性质 15、尺规作图:(1) 作一线段等已知线段 (2)作角已知角 (3)作线段垂直平分线 (4)作角的平分线 (5)作三角形 16、事件的分类:,会求各种事件的概率 (1)摸球:P(摸某种球)= (2)摸牌: P(摸某种牌)= (3)转盘: P(指向某个区域)= (4)抛骰子: P(抛出某个点数)= (5)方格(面积): P(停留某个区域)= 17、必然事件不可能事件,不确定事件 18、方法归纳:(1)求边相等可以利用 (
12、2)求角相等可以利用 。 (3)计算简便可以利用 。 19、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值 初一数学下册知识点汇总 篇四 一、三角形的基本概念: 1、三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形。 三角形ABC记作:ABC。 2、相关概念: 三角形的边:组成三角形的三条线段。记作:AB、AC、BC。 三角形的内角:每两条边所组成的角(简称三角形的角)。 记作:A、B、C 3、三角形的分类: 二、三角形三边关系: 1、三角形任何两边的和大于第三边。 几何语言:若a、b、c为ABC的三边,则a+bc,a+cb,b+ca. 想一想:这个在实际解题中该怎样应用? 2、三边关系也可表述为:三角形任何两边的差都小于第三边。 三、三角形的内角和定理: 三角形三个内角的和等于1800。 几何语言:ABC中,A+B+C=1800。 四、三角形的三线: 问题1、如何作三角形的高线、角平分线、中线? 问题2、三角形的高线、角平分线、中线各有多少条,它们的交点在什么位置? 问题3、三角形的中线有什么应用? 10