《第三节曲面及其方程优秀课件.ppt》由会员分享,可在线阅读,更多相关《第三节曲面及其方程优秀课件.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第三节曲面及其方程第1页,本讲稿共26页一、曲面方程的概念一、曲面方程的概念求到两定点A(1,2,3)和B(2,-1,4)等距离的点的化简得即说明说明:动点轨迹为线段 AB 的垂直平分面.引例引例:显然在此平面上的点的坐标都满足此方程,不在此平面上的点的坐标不满足此方程.解解:设轨迹上的动点为轨迹方程.机动 目录 上页 下页 返回 结束 第2页,本讲稿共26页定义定义1.如果曲面 S 与方程 F(x,y,z)=0 有下述关系:(1)曲面 S 上的任意点的坐标都满足此方程;则 F(x,y,z)=0 叫做曲面曲面 S 的的方程方程,曲面 S 叫做方程 F(x,y,z)=0 的图形图形.两个基本问题
2、两个基本问题 :(1)已知一曲面作为点的几何轨迹时,(2)不在曲面 S 上的点的坐标不满足此方程,求曲面方程.(2)已知方程时,研究它所表示的几何形状(必要时需作图).机动 目录 上页 下页 返回 结束 第3页,本讲稿共26页故所求方程为例例1.求动点到定点方程.特别,当M0在原点时,球面方程为解解:设轨迹上动点为即依题意距离为 R 的轨迹表示上(下)球面.机动 目录 上页 下页 返回 结束 第4页,本讲稿共26页例例2.研究方程解解:配方得此方程表示:说明说明:如下形式的三元二次方程(A 0)都可通过配方研究它的图形.其图形可能是的曲面.表示怎样半径为的球面.球心为 一个球面球面,或点点,或
3、虚轨迹虚轨迹.机动 目录 上页 下页 返回 结束 第5页,本讲稿共26页定义定义2.一条平面曲线二、旋二、旋转曲面曲面 绕其平面上一条定直线定直线旋转一周所形成的曲面叫做旋转曲面旋转曲面.该定直线称为旋转旋转轴轴 .例如例如:机动 目录 上页 下页 返回 结束 第6页,本讲稿共26页建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:故旋转曲面方程为当绕 z 轴旋转时,若点给定 yoz 面上曲线 C:则有则有该点转到机动 目录 上页 下页 返回 结束 第7页,本讲稿共26页思考:思考:当曲线 C 绕 y 轴旋转时,方程如何?机动 目录 上页 下页 返回 结束 第8页,本讲稿共26页例例3.试建
4、立顶点在原点,旋转轴为z 轴,半顶角为的圆锥面方程.解解:在yoz面上直线L 的方程为绕z 轴旋转时,圆锥面的方程为两边平方机动 目录 上页 下页 返回 结束 第9页,本讲稿共26页例例4.求坐标面 xoz 上的双曲线分别绕 x轴和 z 轴旋转一周所生成的旋转曲面方程.解解:绕 x 轴旋转绕 z 轴旋转这两种曲面都叫做旋转双曲面.所成曲面方程为所成曲面方程为机动 目录 上页 下页 返回 结束 第10页,本讲稿共26页三、柱面三、柱面引例引例.分析方程表示怎样的曲面.的坐标也满足方程解解:在 xoy 面上,表示圆C,沿曲线C平行于 z 轴的一切直线所形成的曲面称为圆圆故在空间过此点作柱面柱面.对
5、任意 z,平行 z 轴的直线 l,表示圆柱面圆柱面在圆C上任取一点 其上所有点的坐标都满足此方程,机动 目录 上页 下页 返回 结束 第11页,本讲稿共26页定义定义3.平行定直线并沿定曲线 C 移动的直线 l 形成的轨迹叫做柱面柱面.表示抛物柱面抛物柱面,母线平行于 z 轴;准线为xoy 面上的抛物线.z 轴的椭圆柱面椭圆柱面.z 轴的平面平面.表示母线平行于(且 z 轴在平面上)表示母线平行于C 叫做准线准线,l 叫做母线母线.机动 目录 上页 下页 返回 结束 第12页,本讲稿共26页一般地,在三维空间柱面,柱面,平行于 x 轴;平行于 y 轴;平行于 z 轴;准线 xoz 面上的曲线
6、l3.母线柱面,准线 xoy 面上的曲线 l1.母线准线 yoz 面上的曲线 l2.母线机动 目录 上页 下页 返回 结束 第13页,本讲稿共26页四、二次曲面四、二次曲面三元二次方程 适当选取直角坐标系可得它们的标准方程,下面仅 就几种常见标准型的特点进行介绍.研究二次曲面特性的基本方法:截痕法截痕法 其基本类型有:椭球面、抛物面、双曲面、锥面的图形通常为二次曲面二次曲面.(二次项系数不全为 0)机动 目录 上页 下页 返回 结束 第14页,本讲稿共26页1 1.椭球面球面(1)范围:(2)与坐标面的交线:椭圆机动 目录 上页 下页 返回 结束 第15页,本讲稿共26页与的交线为椭圆:(4)
7、当 ab 时为旋转椭球面;同样的截痕及也为椭圆.当abc 时为球面.(3)截痕:为正数)机动 目录 上页 下页 返回 结束 第16页,本讲稿共26页2.抛物面抛物面(1)椭圆抛物面(p,q 同号)(2)双曲抛物面(鞍形曲面)特别,当 p=q 时为绕 z 轴的旋转抛物面.(p,q 同号)机动 目录 上页 下页 返回 结束 第17页,本讲稿共26页3.双曲面双曲面(1)(1)单叶双曲面单叶双曲面椭圆.时,截痕为(实轴平行于x 轴;虚轴平行于z 轴)平面 上的截痕情况:机动 目录 上页 下页 返回 结束 双曲线:第18页,本讲稿共26页虚轴平行于x 轴)时,截痕为时,截痕为(实轴平行于z 轴;机动
8、目录 上页 下页 返回 结束 相交直线:双曲线:第19页,本讲稿共26页(2)双叶双曲面双叶双曲面双曲线椭圆注意单叶双曲面与双叶双曲面的区别:双曲线单叶双曲面双叶双曲面P18 目录 上页 下页 返回 结束 图形图形第20页,本讲稿共26页4.椭圆锥面面椭圆在平面 x0 或 y0 上的截痕为过原点的两直线.可以证明,椭圆上任一点与原点的连线均在曲面上.(椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换得到,见书 P316)机动 目录 上页 下页 返回 结束 第21页,本讲稿共26页内容小内容小结1.空间曲面三元方程 球面 旋转曲面如,曲线绕 z 轴的旋转曲面:柱面如,曲面表示母线平行 z 轴的
9、柱面.又如,椭圆柱面,双曲柱面,抛物柱面等.机动 目录 上页 下页 返回 结束 第22页,本讲稿共26页2.二次曲面三元二次方程 椭球面 抛物面:椭圆抛物面双曲抛物面 双曲面:单叶双曲面双叶双曲面 椭圆锥面:机动 目录 上页 下页 返回 结束 第23页,本讲稿共26页斜率为1的直线平面解析几何中空间解析几何中方 程平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0)半径为 3 的圆以 z 轴为中心轴的圆柱面平行于 z 轴的平面思考与练习思考与练习1.指出下列方程的图形:机动 目录 上页 下页 返回 结束 第24页,本讲稿共26页2.P318 题3,10机动 目录 上页 下页 返回 结束 题题10 答案答案:在 xoy 面上 第25页,本讲稿共26页作业作业 P318 2;4;7;8(1),(5);11第四节 目录 上页 下页 返回 结束 第26页,本讲稿共26页