《2023年完整人教版小学数学六年级上册知识点归纳总结全面汇总归纳全册2.pdf》由会员分享,可在线阅读,更多相关《2023年完整人教版小学数学六年级上册知识点归纳总结全面汇总归纳全册2.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、六年级上册数学知识点 第一单元 位置 1、什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。作用:确定一个点的位置。经度和纬度就是这个原理。2、图形左右平移行数不变;图形上下平移列数不变。3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。例如:537 表示:求 7 个53的和是多少?或表示:53的 7 倍是多少?2、一个数乘分
2、数的意义就是求一个数的几分之几是多少。注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。(3)在乘的
3、过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0 除外),分数的大小不变。(三)积与因数的关系:一个数(0 除外)乘大于 1 的数,积大于这个数。ab=c,当 b 1 时,ca.一个数(0 除外)乘小于 1 的数,积小于这个数。ab=c,当 b 1 时,c1 时,ca (a 0)除以小于 1 的数,商大于被除数:ab=c 当 ba (a 0 b 0)除以等于 1 的数,商等于被除数:ab=c 当 b=1 时,c=a 三、
4、分数除法混合运算 1、混合运算用梯等式计算,等号写在第一个数字的左下角。2、运算顺序:连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。注:(ab)c=acbc 四、比:两个数相除也叫两个数的比 1、比式中,比号()前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。注:连比如:3:4:5 读作:3 比 4 比 5 2、比表示的是两个数的关系,可以用分数表示,写
5、成分数的形式,读作几比几。例:1220=20121220=53=0.6 1220 读作:12 比 20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0 除外),比值不变。3、化简比:化简之后结果还是一个比,不是一个数。(1)、用比的前项和后项同时除以它们的最大公约数。(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。4、求比值
6、:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。后项 前项 比号 比值 比字后面的量乙)甲(=比后差 5、比和除法、分数的区别:除法 被 除数 除号()除数(不能为 0)商不变性质 除法是一种运算 分数 分子 分数线()分母(不能为 0)分数的基本性质 分数是一个数 比 前项 比号()后项(不能为 0)比的基本性质 比表示两个数的关系 附:商不变性质:被除数和除数同时乘或除以相同的数(0 除外),商不变。分数的基本性质:分子和分母同时乘或除以相同的数(0 除外),分数的大小不变。五、分数除法和比的应用 1、已知单位“1”的量用乘法。例:甲是乙的53,乙是 25,求甲是多少?即
7、:甲=乙53(1553=9)2、未知单位“1”的量用除法。例:甲是乙的53,甲是 15,求乙是多少?即:甲=乙53(1553=25)(建议列方程答)5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。(2)分析数量关系。(3)找等量关系。(4)列方程。注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。第四单元 圆 一、.圆的特征 1、圆是平面内封闭曲线围成的平面图形,.2、圆的特征:外形美观,易滚动。3、圆心 o:圆中心的点叫做圆心圆心一般用字母 O 表示圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。半径 r:连接圆心到圆上任意一点的线段叫做半径
8、。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。直径 d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。同圆或等圆内直径是半径的 2 倍:d=2r 或 r=d2=21d=2d 4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角 有二条对称轴的图形:长方形 有三条对称轴的图形:等边三角
9、形 有四条对称轴的图形:正方形 有无条对称轴的图形:圆,圆环 6、画圆(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母 C表示。1、圆的周长总是直径的三倍多一些。2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母 表示。即:圆周率 =直径周长=周长 直径 3.14 所以,圆的周长(c)=直径(d)圆周率()周长公式:c=d 或 c=2 r 注:圆周率 是一个无限不循环小数,3.14 是近似值。三、圆的面积 s 1、圆面积公式的推导 如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像
10、越接近长方形。圆的半径=长方形的宽 圆的周长的一半=长方形的长 长方形面积=长 宽 所以:圆的面积=长方形的面积=长 宽=圆的周长的一半(r)圆的半径(r)S圆=rr=r2 第五单元、百分数 一、百分数的意义:表示一个数是另一个数的百分之几。注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系。(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只以是整数。2、
11、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”。(2)小数化百分数:小数点向右移动两位,添上“%”。(3)百分数化分数:先把百分数写成分母是 100 的分数,然后再化简成最简分数。(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。(5)小数 化 分数:把小数成分母是 10、100、1000 等的分数再化简。(6)分数 化 小数:分子除以分母。二、百分数应用题 1、求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几 2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了
12、百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。求甲比乙多百分之几 (甲-乙)乙 求乙比甲少百分之几 (甲-乙)甲 3、求一个数的百分之几是多少 一个数(单位“1”)百分率 4、已知一个数的百分之几是多少,求这个数 部分量百分率=一个数(单位“1”)5、折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十 折扣 成数 几分之几 百分之几 小数 通用 八折 八成 十分之八 百分之八十 0.8 八五折 八 成五 十分之八点五 百分之八十五 0.85 五折 五成 十分之五 百分之五十 0.5 半价 6、纳税 缴纳的税款叫做应纳税额。(应纳税额)(总收入)=(税率)(应纳税额)
13、=(总收入)(税率)7、利率(1)存入银行的钱叫做本金。(2)取款时银行多支付的钱叫做利息。(3)利息与本金的比值叫做利率。利息=本金利率时间 税后利息=利息-利息的应纳税额=利息-利息5%第六单元、统计 1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各 部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比 图。2、常用统计图的优点:(1)、条形统计图直观显示每个数量的多少。(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。(3)、扇形统计图直观显示部分和总量的关系。第七单元、数学广角 一、研究中国古代的鸡兔同笼问题。1、用表格方式解决有局限性,数目必须小,例:头数 鸡(只)兔(只)腿数 35 1 34 35 2 33 35 3 32 (逐一列表法、腿数少,小幅度跳跃;腿数多,大幅度跳跃。跳跃逐一相结合、取中列表)2、用假设法解决(1)假如都是兔(2)假如都是鸡(3)假如它们各抬起一条腿(4)假如兔子抬起两条前腿 3、用代数方法解(一般规律)