《2023年冀教版七年级数学一元一次方程应用题复习题及超详细解析答案.pdf》由会员分享,可在线阅读,更多相关《2023年冀教版七年级数学一元一次方程应用题复习题及超详细解析答案.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备 欢迎下载 一元一次方程应用题 1列一元一次方程解应用题的一般步骤 (1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案 2.和差倍分问题 增长量原有量增长率 现在量原有量增长量 3.等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变 圆柱体的体积公式 V=底面积高Shr2h 长方体的体积 V长宽高abc 4数字问题
2、一般可设个位数字为 a,十位数字为 b,百位数字为 c 十位数可表示为 10b+a,百位数可表示为 100c+10b+a 然后抓住数字间或新数、原数之间的关系找等量关系列方程 5市场经济问题 (1)商品利润商品售价商品成本价(2)商品利润率商品利润商品成本价100%(3)商品销售额商品销售价商品销售量 (4)商品的销售利润(销售价成本价)销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打 8 折出售,即按原标价的 80%出售 6行程问题:路程速度时间 时间路程速度 速度路程时间 (1)相遇问题:快行距慢行距原距 (2)追及问题:快行距慢行距原距 (3)航行问题:顺水(风)速度
3、静水(风)速度水流(风)速度 逆水(风)速度静水(风)速度水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系 7工程问题:工作量工作效率工作时间 完成某项任务的各工作量的和总工作量1 8储蓄问题 学习必备 欢迎下载 利润每个期数内的利息本金100%利息本金利率期数 1将一批工业最新动态信息输入管理储存网络,甲独做需 6 小时,乙独做需 4小时,甲先做 30 分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2兄弟二人今年分别为 15 岁和 9 岁,多少年后兄的年龄是弟的年龄的 2 倍?3将一个装满水的内部长、宽、高分别为 300 毫米,300 毫米
4、和 80 毫米的长方体铁盒中的水,倒入一个内径为 200 毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到 0.1 毫米,3.14)4有一火车以每分钟 600 米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多 5 秒,又知第二铁桥的长度比第一铁桥长度的 2 倍短 50 米,试求各铁桥的长 5有某种三色冰淇淋 50 克,咖啡色、红色和白色配料的比是 2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?列出方程解所的求未知数值检验写答案算公式依据形虽变但体积不圆出柱底面高长题商品利柱底润售价形虽知求成本率销?案出?公式底?学习必备 欢迎下载 6某车间有 16 名工人,
5、每人每天可加工甲种零件 5 个或乙种零件 4 个在这16 名工人中,一部分人加工甲种零件,其余的加工乙种零件 已知每加工一个甲种零件可获利 16 元,每加工一个乙种零件可获利 24 元 若此车间一共获利 1440 元,求这一天有几个工人加工甲种零件 7某地区居民生活用电基本价格为每千瓦时 0.40 元,若每月用电量超过 a 千瓦时,则超过部分按基本电价的 70%收费 (1)某户八月份用电 84 千瓦时,共交电费 30.72 元,求 a(2)若该用户九月份的平均电费为 0.36 元,则九月份共用电多少千瓦?应交电费是多少元?8某家电商场计划用 9 万元从生产厂家购进 50 台电视机已知该厂家生产
6、 3种不同型号的电视机,出厂价分别为 A种每台 1500 元,B种每台 2100 元,C种每台 2500 元 (1)若家电商场同时购进两种不同型号的电视机共 50 台,用去 9 万元,请你研究一下商场的进货方案 (2)若商场销售一台 A种电视机可获利 150 元,销售一台 B种电视机可获利 200 元,销售一台 C种电视机可获利 250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?列出方程解所的求未知数值检验写答案算公式依据形虽变但体积不圆出柱底面高长题商品利柱底润售价形虽知求成本率销?案出?公式底?学习必备 欢迎下载 答案 1解:设甲、乙一起做还需 x 小
7、时才能完成工作 根据题意,得1612+(16+14)x=1 解这个方程,得 x=115 115=2小时 12 分 答:甲、乙一起做还需 2 小时 12 分才能完成工作 2解:设 x 年后,兄的年龄是弟的年龄的 2 倍,则 x 年后兄的年龄是 15+x,弟的年龄是 9+x 由题意,得 2(9+x)=15+x 18+2x=15+x,2x-x=15-18 x=-3 答:3 年前兄的年龄是弟的年龄的 2 倍 (点拨:-3 年的意义,并不是没有意义,而是指以今年为起点前的 3 年,是与 3 年后具有相反意义的量)3解:设圆柱形水桶的高为 x 毫米,依题意,得 (2 02)2x=30030080 x229
8、.3 答:圆柱形水桶的高约为 229.3 毫米 4解:设第一铁桥的长为 x 米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为600 x分 过完第二铁桥所需的时间为250600 x分 依题意,可列出方程 600 x+560=250600 x 解方程 x+50=2x-50 得 x=100 2x-50=2100-50=150 答:第一铁桥长 100 米,第二铁桥长 150 米 5解:设这种三色冰淇淋中咖啡色配料为 2x 克,列出方程解所的求未知数值检验写答案算公式依据形虽变但体积不圆出柱底面高长题商品利柱底润售价形虽知求成本率销?案出?公式底?学习必备 欢迎下载 那么红色和白色配料分
9、别为 3x 克和 5x 克 根据题意,得 2x+3x+5x=50 解这个方程,得 x=5 于是 2x=10,3x=15,5x=25 答:这种三色冰淇淋中咖啡色、红色和白色配料分别是 10 克,15 克和 25 克 6解:设这一天有 x 名工人加工甲种零件,则这天加工甲种零件有 5x 个,乙种零件有 4(16-x)个 根据题意,得 165x+244(16-x)=1440 解得 x=6 答:这一天有 6 名工人加工甲种零件 7解:(1)由题意,得 0.4a+(84-a)0.40 70%=30.72 解得 a=60 (2)设九月份共用电 x 千瓦时,则 0.4060+(x-60)0.40 70%=0
10、.36x 解得 x=90 所以 0.36 90=32.40(元)答:九月份共用电 90 千瓦时,应交电费 32.40 元 8解:按购 A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购 A种电视机 x 台,则 B种电视机 y 台 (1)当选购 A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500 x+2100(50-x)=90000 即 5x+7(50-x)=300 2x=50 x=25 50-x=25 当选购 A,C两种电视机时,C种电视机购(50-x)台,可得方程 1500 x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x
11、=15 当购 B,C两种电视机时,C种电视机为(50-y)台 可得方程 2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意 由此可选择两种方案:一是购 A,B两种电视机 25 台;二是购 A种电视机 35 台,C种电视机 15 台 (2)若选择(1)中的方案,可获利 15025+25015=8750(元)列出方程解所的求未知数值检验写答案算公式依据形虽变但体积不圆出柱底面高长题商品利柱底润售价形虽知求成本率销?案出?公式底?学习必备 欢迎下载 若选择(1)中的方案,可获利 15035+25015=9000(元)90008750 故为了获利最多,选择第二种方案 列出方程解所的求未知数值检验写答案算公式依据形虽变但体积不圆出柱底面高长题商品利柱底润售价形虽知求成本率销?案出?公式底?