《2023年六年级下册体积表面积.pdf》由会员分享,可在线阅读,更多相关《2023年六年级下册体积表面积.pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备欢迎下载 第二单元 2.圆柱的表面积 班级:姓名:【学习目标】1.理解圆柱表面积的含义;理解并掌握圆柱侧面积和表面积的计算方法。灵活运用侧面积和表面积的有关知识解决实际问题。2.通过探索圆柱侧面积的计算方法,进一步掌握转化的思想方法。【学习过程】一、自主探究(课本 21 页)1.借助身边的圆柱形物体说说圆柱的表面积指什么?2.把上节课做好的圆柱模型展开,并在展开后的图形中标明圆柱的各面。3.圆柱的底面是()形,面积的计算公式是()。4.圆柱的侧面展开是长方形,它的长等于圆柱的(),它的宽等于圆柱的()。长方形的面积=()()圆柱的侧面积=()()用字母表示就是()。5.说一说如何才能求
2、出圆柱的表面积?二、课堂练习 1.求下面个圆柱的侧面积。(1)底面周长是 1.2m,高 0.7m。(2)底面直径是 3cm,高 6cm。(3)底面半径是 2.5dm,高 4dm。2.求下面各圆柱的表面积。3.解决问题。学习必备欢迎下载用一张长 10cm,宽 8cm的长方形纸围成一个圆柱,这个圆柱的侧面积是多少平方厘米?一台压路机的前轮是圆柱形,轮宽 2m,直径 1.2m。前轮转动一周,压路面积是多少平方米?学校要粉刷礼堂前的两根柱子,量得柱子高 3 米,底面周长是 4.5 米,粉刷的面积是多少平方米?三、当堂检测 1.求下面各圆柱的表面积。2.给一个圆柱形水壶做布套(如右图),至少需要多少布料
3、?3.做一个底面直径 2 分米的圆柱形通风管,至少需要 43.96 平方分米的铁皮,这个通风管长多少分米?第二单元 3.运用圆柱的表面积解决实际问题 班级:姓名:思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载【学习目标】进一步掌握圆柱侧面积和表面积的计算方法,能正确运用公式进行计算。灵活运用侧面积和表面积的有关知识解决实际问题。【学习过程】一、自主探究(课本 22 页)1.一个没有盖的圆柱形铁皮水桶,高是 24 厘米,底面直径是 20 厘米
4、,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)2.根据生活实际,把正确答案的序号填在()里。A表面积 B 侧面积 C底面积 侧面积个底面积 求制作一个圆柱形包装盒至少要用多少硬纸板,实际就是求圆柱的()。求压路机车轮旋转一周的压路面积,实际就是求圆柱的()。求制作一个无盖水桶需要多少铁皮,实际就是求圆柱的()。求圆柱形鱼池内壁和底面抹水泥的面积,实际就是求圆柱的()。求圆柱形饮料罐侧面的商标面积,实际就是求圆柱的()。制作一个圆柱形灯罩至少需要多少布料,实际就是求圆柱的()。求圆柱形帐篷的占地面积,实际就是求圆柱的()。二、课堂练习 1.一个圆柱形无盖玻璃鱼缸,底面直径是 40cm
5、,高是 28cm。制作这个鱼缸至少需要多少玻璃?(得数保留整十平方厘米)2.一个圆柱形罐头侧面贴一圈商标纸,底面直径是 12cm,高是 8cm,侧面商标的面积至少是多少平方厘米?3.修建一个圆柱形沼气池,底面直径是 3 米,深 2 米。在池的内壁与下底面抹上水泥,抹水泥部分的面积是多少平方米?4.一节铁皮烟囱长 1 米,底面半径是 5cm,制作 50 节这样的烟囱需要铁皮多少平方米?想一想,我们学过哪些取近似值的方法?分别是()、()、()。在这个题中使用哪种方法取近似值更合适?为什么?思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母
6、表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载 5.一个圆柱的侧面积是 188.4 平方分米,底面半径是 2 分米。它的高是多少?三、当堂检测 1.小文想给她的圆柱形笔筒的侧面贴上彩纸,至少需要多少彩纸?2.一段圆柱形木料底面直径是 0.6 米,长 3 米,沿中间将这段木料锯成两个同样大小的圆柱,表面积增加了多少?3.一辆压路机的前轮宽 1.5 米,直径是 0.8 米,每分钟转动 18 周。这辆压路机每分钟前进多少米?每分钟压过的路面的面积是多少平方米?4.用铁皮做一个零件(如下图,两头不封口),需要多少铁皮?(单位:cm)第二单元 5.圆柱表面
7、积体积练习 班级:姓名:【学习目标】1.通过练习,能够更好地掌握圆柱的表面积、体积、容积的计算方法。综合应用数学知识解决实际问题。思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载2.借助对比,在具体的情境中进一步明确知识的应用价值。【学习过程】一、自主探究1.填一填(1)圆柱的体积跟它的()和()有关,计算公式为()。(2)往大堂的柱子涂油漆,求涂漆部分的面积,就是求()(3)求圆柱形鱼池最多能装多少升水,就是求鱼池的()(4)做一个圆柱形笔
8、筒所需要的塑料。就是求笔筒的()(5)求一段圆柱形钢条有多少立方米,就是求它的()(6)求压机路滚筒滚一周压路的面积,就是求滚筒的()2.求下面图形的表面积和体积。(单位:cm)二、课堂练习 1.选择。(1)把一个圆柱的侧面展开,不可能得到下面的图形是()。A B C D (2)一个圆柱体切拼成一个近似长方体后,()A 表面积不变,体积不变;B 表面积变大,体积不变;C 表面积变大,体积变大。(3)一个圆柱侧面展开是一个正方形,它的高是底面半径的()倍。A 2 B 2 C 6.28 2.阳光花园规划建造一个圆柱形喷水池,水池底面周长 50.24 米。(1)如果水池深 4 米,这个水池最多蓄水多
9、少立方米?(2)如果在水池底面及内侧面抹上水泥,那么抹水泥的面积有多大?思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载 3.一个圆柱形粮囤,从里面量的底面半径是 1 米,高 2 米。如果每立方米玉米约重 800kg,这个粮囤能装多少吨米?4.把一个棱长是 6 分米的正方体削成一个最大的圆柱体,削去的体积是多少?三、当堂检测1.一个圆柱形水桶的容积是 50.24L,其底面半径是 2 分米,水桶的高是多少分米?2.学校要在教学区和操场之间修一条
10、围墙,原计划用土石 35 立方米。后来多开了一个月亮门,减少了土石的用量。现在用了多少立方米土石?3.两个底面积相等的圆柱,一个圆柱的高是 4 分米,体积是 32 立方分米。另一个圆柱的高是 3.5 分米,那么它的体积是多少?第三单元 6.圆锥的体积 班级:姓名:【学习内容】人教版小学数学教材六下第 33-34 页例 2、例 3.【课标描述】结合具体情境,探索并掌握圆锥的体积的计算方法,并能解决简单的实际问题。思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路
11、学习必备欢迎下载【学习目标】1.通过动手操作实验,推导出圆锥体体积的计算方法,2.能运用公式计算圆锥体的体积,正确运用圆锥的体积计算方法解决实际问题。3.通过动脑、动手,培养自己的思维能力和空间想象能力,体会转化的思想。【学习重点】1.通过动手操作实验,推导出圆锥体体积的计算方法,2.能运用公式计算圆锥体的体积,正确运用圆锥的体积计算方法解决实际问题。【学习难点】理解并掌握推导圆锥体体积的计算公式的过程。【评价活动方案】1.组织小组合作进行操作实验,推导圆锥的体积计算公式,通过汇报交流评价目标 1.2.独立解答和交流相关练习题,评价能否运用公式计算圆锥体的体积,并会解决实际问题。以评价目标2。
12、3.通过汇报交流推导公式和解决问题的过程,评价是否会运用转化思想,具有一定空间想象能力。以评价目标 3.【学习过程】一、自主探究 1.刚刚学过圆柱的体积,你能熟练计算吗?(1)已知底面积 25 平方分米,高 5 分米,求体积。(2)已知底面半径 3cm,高 8cm,求体积。(3)已知底面周长 12.56m,高 3m,求体积。2.自学课本 33-34 页,完成填空。(评价目标 1、3)(1)借助学具完成书上 25-26 页的实验,实验中的圆柱和圆锥必须是()。要研究下面这个圆锥的体积,应该选择()号圆柱。思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆
13、柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载 (2)通过实验,因为:圆柱的体积=()(),所以圆锥的体积=()(3)等底等高的圆柱和圆锥,圆锥的体积等于圆柱体积的(),圆柱的体积等于圆锥体积的()。二、课堂练习(评价目标 2)1.填空。(1)圆柱的体积是9cm3,与它等底等高的圆锥体积是()。(2)圆锥底面积5.4m2,高21m,体积是()。(3)一个圆锥的体积是 141.3cm3 与它等底等高的圆柱体体积是()cm3。(4)一个圆锥的体积是 n 立方厘米,和它等底等高的圆柱体的体积是()立方厘米。(5)一个圆柱和一个圆锥的体积
14、和底面积都相等,圆锥的高是 9 厘米,圆柱的高是()厘米。2.判断。(评价目标 3)(1)圆锥的体积等于圆柱体积的13。()(2)把一个圆柱本块削成一个最大的圆锥,应削去圆柱体积的23。()(3)圆锥的高是圆柱的高的3倍,它们的体积一定相等。()(4)一个圆锥的底面半径扩大 3 倍,它的体积也扩大扩大 3 倍。()(5)等底等高的圆柱和圆锥的体积相差 16 立方米,这个圆锥的体积是 8 立方米。()3.一个圆锥形的零件,底面积是 19 平方厘米,高是 12 厘米。这个零件的体积是多少?4.一堆圆锥形沙堆,底面直径是 10 米,高是 3 米,这堆沙子有多少立方米?三、当堂检测(评价目标 2)1.
15、计算下面圆锥的体积。(1)(2)底面周长 31.4 米,高是 6 米。思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载 2.解决问题。(1)一堆圆锥形黄沙,底面周长是 25.12 米,高 1.5 米,每立方米的黄沙重 1.5 吨,这堆沙重多少吨?(2)一个圆锥的体积是 12 立方厘米,底面积是 4 平方厘米,高是多少厘米?四、实践活动 小组同学在一起找一个圆锥形的物体(如一堆沙子),想办法计算出它的体积。提示:应先测量圆锥形沙堆的和。教学反思
16、:第三单元 7.圆锥体积的练习 班级:姓名:【学习目标】1.熟练运用圆锥体积的计算公式正确计算圆锥的体积,解决相关的实际问题。2.进一步深刻理解圆锥的体积和等底等高的圆柱的联系。【学习过程】一、自主探究 1.圆锥的体积等于和它()的圆柱体积的()。2.根据已知条件,写出圆锥体积的计算公式。(1)已知底面积 s 和高 h,()(2)已知底面直径和高 h,()(3)已知底面半径和高 h,()(4)已知底面周长和高 h,()3.圆锥的体积公式13 中,Sh 求的是()的体积。4.利用圆柱和圆锥的体积相互关系填空。(1)一个圆柱的体积是 18 立方厘米,与它等底等高的圆锥的体积是()。(2)一个圆锥的
17、体积是 18 立方厘米,与它等底等高的圆柱的体积是()。(3)一个圆柱与和它等底等高的圆锥的体积的和是 144 立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。(4)一个圆柱与和它等底等高的圆锥的体积相差 36 立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。二、课堂练习 1.求下面圆锥的体积。(1)S底=1.5m2,h=5m。(2)r=10dm,h=2dm。思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载(3)d
18、=2cm,h=0.25m。(4)C=6.28m,h=5m。2.填空。(1)有一个圆柱和一个圆锥,它们的底面半径相等,高也相等,圆柱的体积是 6 立方分米,圆锥的体积是()立方分米。(2)等底等高的圆柱和圆锥,圆柱的体积比圆锥多()%。圆锥的体积比圆柱少()%。(3)圆锥的底面积和高都扩大到原来的 4 倍,则体积扩大到原来的()倍。(4)一个圆柱和一个圆锥的底面积相等,要想使圆柱的体积和圆锥的体积相等,那么圆锥的高必须是圆柱高的()。(5)一个圆柱和一个圆锥的的底面积和高都相等,已知圆锥的体积比圆柱的体积少 12 立方米,圆柱的体积是()立方米。3.把 1.5L 果汁倒入一个底面直径是 20cm
19、,高是 15cm的圆锥形容器中,能装下吗?三、当堂检测 1.计算下面这个零件的体积。(单位:cm)2.选择。(1)一个圆柱体的体积和底面积与一个圆锥分别相等,圆柱体的高是圆锥体的()。A.3倍 B.2倍 C.23 D.13 (2)把一段均匀的圆柱形钢材小成一个最大的圆锥,削掉的部分重 8 千克,这段圆柱形钢材重()千克。A.24 B.16 C.12 D.8(3)一个圆柱和一个圆锥的底面积相等,圆柱的体积是圆锥的 2 倍,圆柱的高是圆锥高的()。A.12 B.13 C.23 D.14 3.一个近似圆锥形的麦堆,底面周长是 12.56 米,高 1.2 米,如果每立方小麦重 750 千克,这堆小麦重
20、多少千克?思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载 4.有一根底面直径是 8 厘米,长是 15 厘米的圆柱形钢材,要把它削成最大的圆锥形钢材,削去的钢材是多少立方厘米?第三单元 8.圆柱与圆锥的整理复习 班级:姓名:【学习目标】1.提升自己有条理地对所学知识进行整理归纳的能力,系统地掌握本单元所学的立体图形知识。2.掌握圆柱、圆锥的特征和它们的体积之间的联系与区别,准确运用圆柱表面积、体积,圆锥体积的计算公式,灵活解决问题。【学习过程
21、】一、自主探究 1.知识梳理。简单整理一下本单元的内容吧!2.本单元的学习过程中,我们在很多地方运用了转化的方法。将圆柱的侧面积转化成(),将圆柱的体积转化成(),将圆锥的体积转化成()。3.说一说怎样计算圆柱和表面各和圆柱圆锥的体积。二、课堂练习 1.填空。(1)一个圆柱形水桶,底面半径 10 分米,高 20 分米。给这个水桶加个盖,是求();给这个水桶加个箍,是求();给这个水桶的外面涂上油漆,是求();这个水桶能装多少水,是求()。(2)一个圆柱体水桶的容积是 50 立方分米,内底面积是 10 平方分米,水桶深()分米。(3)一个圆锥体玻璃杯高 9 厘米,盛满水后倒入与它等底等高的圆柱体
22、玻璃杯中,这时水深()厘米。(4)一个半径为 10 厘米的圆柱体容器内,完全浸入一个圆锥,水面上升了 2 厘米,这个圆锥的体积是()。2.如图所示,沿着图形的一条边进行旋转,会得到什么图形?试着画出立体图,并按要求进行计算。思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载 3.判断。(1)圆锥的底面积不变,它的高度越高,圆锥的体积就越大。()(2)从圆锥的顶点到底面圆上的线段是圆锥的高。()(3)一个圆锥的底面半径不变,高扩大 2 倍,体积就
23、扩大 2 倍。()4.学校用的自来水管的内直径为 0.2 分米,自来水的流速,一般为每秒 5 分米,如果你忘记关上水龙头,一分钟你将浪费多少升水?三、当堂检测 1.填空。(1)一个圆柱的底面半径是 4dm,高 7dm,它的侧面积是()平方分米。体积是()立方分米。(2)一个圆柱的侧面积是 18.84 平方米,高是 3 米,底面周长是()米。(3)一个圆锥体零件的体积是 30 立方厘米,底面积是 15 平方厘米,它的高是()厘米。2.有一个圆锥形沙堆(如图),每立方米沙子重 1.5 吨,你能计算出这堆沙子的重量吗?3.一个圆柱形的橡皮泥,底面积是 12 平方厘米,高是 5 厘米。(1)如果把它捏
24、成同样底面积的圆锥,这个圆锥的高是多少?(2)如果把它捏成同样高的圆锥,这个圆锥的底面积是多少?思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载 一、自主探究(课本 2527 页)(评价目标 1、2)圆柱的体积怎样计算呢?能不能把它转化成我们学过的立体图形?自学课本 p25 例 5,你发现了什么?1.把圆柱的底面平均分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的(),分的份数越多,拼成的图形就越接近(),它的底面积等于圆柱的(),它的
25、高等于圆柱的()。因为长方体的体积=()()所以 圆柱的体积=()()2.字母公式怎么表示?()3.在计算过程中,有的并不是直接给出圆柱的底面积,而是给出底面半径或直径,怎样计算圆柱的体积呢?字母公式是:V()或 V=()4.填一填。底面积/m2 高/m 圆柱的体积/m3 7 3 4 25.12 二、课堂练习(评价目标 3)1.计算下面各圆柱的体积。(单位:cm)2.一个圆柱的体积是 80 立方厘米,底面积是 16 平方厘米,高是多少?3.下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱
26、的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路学习必备欢迎下载4.一个圆柱形玻璃容器的底面直径是 10 厘米,当把一铁块完全浸没在这个容器的水中后,水面上升了 2厘米,这块铁块的体积是多少?5.一个用塑料薄膜覆盖的蔬菜大棚,长 15 米,横截面是一个半径 2 米的半圆,大棚内的空间有多大?三、当堂检测(评价目标 1、2、3)1.求圆柱的体积。(1)底面半径 2cm,高 5cm (2)底面周长 25.12dm,高 10dm 2.判断。(1)圆柱的底面积不变,高扩大 3 倍,那么体积就扩大 3 倍。()(2)体积相等的两个圆柱体,它们的底面积一定相等。()3.两个底面积相等的圆柱,一个高为 4.5dm,体积为 81dm3.另一个高为 3dm,它的体积是多少?思想方法学习过程一自主探究课本页借助身边的圆柱形物体说说圆柱的它的宽等于圆柱的长方形的面积圆柱的侧面积用字母表示就是说一说如一个圆柱这个圆柱的侧面积是多少平方厘米学习必备欢迎下载一台压路