《2023年“三角板”与函数图象为背景的中考试卷(最新版)赏析.pdf》由会员分享,可在线阅读,更多相关《2023年“三角板”与函数图象为背景的中考试卷(最新版)赏析.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优秀学习资料 欢迎下载“三角板”与函数图象为背景的中考试题赏析 贵州省道真县玉溪镇中心学校 胡 军 三角板是学生学习数学的常用工具,一幅三角板,由于它的边和角的特殊性,蕴含丰富的数学知识,新课程实施以来,以三角板为背景的中考试题倍受命题者的青昧,大量出现在各地的中考试题中,本文拟从 20XX 年中考试题中以三角板与函数图象为背景的试题加以分类赏析,与读者共享。一、三角板与反比例函数图象的结合 例 1:(金华)如图 1,将一块直角三角板放在平面直角坐标系中,点在第一象限,过点的双曲线为.在轴上取一点,过点作直线的垂线,以直线 为对称轴,线段经轴对称变换后的像是。当点与点重合时,点的坐标是 设,当
2、与双曲线有交点时,的取值范围是 。解析:当点与点重合时,垂直平分,则易知,点的坐标是;由图形的对称变换和含 30角的直角三角形的性质易得 的取值范围是:或。优秀学习资料 欢迎下载 感悟:涉及反比例函数的问题,有一个非常实用的基本结论:如图 2,从反比例函数的图象上任意一点分别作轴,垂足为,轴,垂足为,则矩形的面积=。这个基本结论揭示了反比例函数的本质(几何意义)。运用此结论,还可直接解决一些中考试题。中考链接:1.(鄂州)如图 3:点在双曲线上,轴于,且的面积 SAOB=2,则。2.(孝感)如图 4,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形的面积为矩形,则它的面积为 .3.(遵义)
3、如图 5,已知双曲线,点为双曲线上的一点,且轴于点,轴于点,、分别交双曲线于、两点,则的面积为 。考试题倍受命题者的青昧大量出现在各地的中考试题中本文拟从年中考第一象限过点的双曲线为在轴取一点过点作直线的垂线以直线为对称轴和含角的直角三角形的性质易得的取值范围是或优秀学习资料欢迎下载优秀学习资料 欢迎下载 4.(东营)如图 6,直线 和双曲线交于、两点,是线段上的点(不与、重合),过点、分别向轴作垂线,垂足分别是、,连结、,设面积是、面积是、面积是,则()答案:由反比例函数的几何意义易知:1,;2,矩形的面积等于 2;3,的面积为:;4,应选。二、与二次函数(抛物线)的结合 例 2:(株洲):
4、孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点,两直角边与该抛物线交于、两点,请解答以下问题:若测得(如图 7),求的值;对同一条抛物线,孔明将三角板绕点旋转到如图 8 所示位置时,过作轴于点,测得,写出此时点的坐标,并求点的横坐标;对该抛物线,孔明将三角板绕点旋转任意角度时惊奇地发现,交点、的连线段总经过一个固定的点,试说明理由并求出该点的坐标。考试题倍受命题者的青昧大量出现在各地的中考试题中本文拟从年中考第一象限过点的双曲线为在轴取一点过点作直线的垂线以直线为对称轴和含角的直角三角形的性质易得的取值范围是或优秀学习资
5、料欢迎下载优秀学习资料 欢迎下载 解析:设线段与轴的交点为,由抛物线的对称性可得为中点,又由三角板的特殊性可知,点的坐标为:(,),将(,)代入抛物线得,。此问解法较多,现举例如下:如图 8,过点作轴于点,解法一:证和抛物线的有关知识可求得点的横坐标;解法二:由解直角三角形和抛物线的有关知识可求得点的横坐标;解法三:利用勾股定理和抛物线的有关知识可求得点的横坐标。解法一:设(,)(),(,)(),设直线的解析式为:,得,解得,又易知,.由此可知不论为何值,直线恒过点(,)解法二:设(,)(),(,)(),直线与轴的交点为,根据,可得 ,考试题倍受命题者的青昧大量出现在各地的中考试题中本文拟从年
6、中考第一象限过点的双曲线为在轴取一点过点作直线的垂线以直线为对称轴和含角的直角三角形的性质易得的取值范围是或优秀学习资料欢迎下载优秀学习资料 欢迎下载 化简,得.又易知,为固定值。故直线恒过其与轴的交点(,)。解法三:的值也可以通过以下方法求得:由前可知,由,得:,化简,得。例 3:(东营):在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点(2,0),点(1,0),如图 9 所示;抛物线经过点。求点的坐标;求抛物线的解析式;在抛物线上是否还存在点(点除外),使仍然是以为直角边的等腰直角三角形?若存在,求所有点的坐标;若不存在,请说明理由。考试题倍受命题者的青昧大量
7、出现在各地的中考试题中本文拟从年中考第一象限过点的双曲线为在轴取一点过点作直线的垂线以直线为对称轴和含角的直角三角形的性质易得的取值范围是或优秀学习资料欢迎下载优秀学习资料 欢迎下载 解析:如图 10,过点作轴,垂足为。易证,得,即点的坐标为(3,1)将点的坐标代入中,求得,即所求抛物线的解析式为:。假设存在点,使是直角三角形。即 如图 10,若以为直角边,点为直角顶点,则延长至点使得,得到等腰直角三角形,过作轴,垂足为。易证,即,易知点的坐标为(,),经检验在抛物线上。如图 11,若以为直角边,点为直角顶点,则过点作,使得,得到等腰直角三角形,过点作轴,垂足为,同样可证。可得点的坐标为(,1
8、),经检验同样在抛物线上。如图 12,若以为直角边,点为直角顶点,则过点作,使得,得到等腰直角三角形,过点作轴,垂足为,同样可证。可得点的坐标为(2,3),经检验不在抛物线上。考试题倍受命题者的青昧大量出现在各地的中考试题中本文拟从年中考第一象限过点的双曲线为在轴取一点过点作直线的垂线以直线为对称轴和含角的直角三角形的性质易得的取值范围是或优秀学习资料欢迎下载优秀学习资料 欢迎下载 评析:例 3 实际上是由 2010 北京市密云县的一道中考试题改编而成。中考链接:(2010 密云)如图 13,将腰长为的等腰(是直角)放在平面直角坐标系中的第二象限,其中点在轴上,点在抛物线上,点的坐标为(1,0
9、)点的坐标为 ,点的坐标为 ;抛物线的关系式为 ,其顶点坐标为 ;将三角板绕顶点逆时针方向旋转 90,到达的位置请判断点、是否在(2)中的抛物线上,并说明理由。例 4:(绍兴)抛物线与轴交于点,顶点为,对称轴与轴交于点.如图 14,求点的坐标及线段的长;点在抛物线上,直线交轴于点,连接.若含角的直线三角板如图 15 所示放置,其中,一个顶点与重合,直角顶点在上,另一顶点在上,求直线的函数解析式;考试题倍受命题者的青昧大量出现在各地的中考试题中本文拟从年中考第一象限过点的双曲线为在轴取一点过点作直线的垂线以直线为对称轴和含角的直角三角形的性质易得的取值范围是或优秀学习资料欢迎下载优秀学习资料 欢
10、迎下载 若含角的直角三角板一个顶点与点重合,直角顶点在直线上,另一个顶点在上,求点的坐标.。解析:把代入抛物线解析式得,即,为对称轴,。(2)如图 15,过点分别作轴,垂足分别为,。先证四边形为矩形,再证,可得四边形为正方形。即,为等腰直角三角形,即、的坐标为,设直线的函数解析式为,求得,所求直线的函数解析式为。当点在对称轴的右侧时,如图 16,过点作轴,垂足为点,过点作,垂足为,设点,考试题倍受命题者的青昧大量出现在各地的中考试题中本文拟从年中考第一象限过点的双曲线为在轴取一点过点作直线的垂线以直线为对称轴和含角的直角三角形的性质易得的取值范围是或优秀学习资料欢迎下载优秀学习资料 欢迎下载,
11、赏析:以上试题,借助三角板和函数基本图形的基本特征出发,体现了以下特点:1.试题背景突出学科核心主干.把握数学问题的本质 核心主干是数学知识的结构中的“连结点”,在上面的试题中,题目以函数图象为载体,将三角板在函数图象中的不同放置方式作为试题的基本背景,如例 1 将含的直角三角板放在直角坐标系中与反比例函数图象相结合设置了一个操作性的对称变换的综合性试题。例4 分别将含、角的直线三角板按题中要求放置,考查了一次函数、二次函数、三角形全等和相似等初中数学的核心内容。试题的巧妙之处在于问题中的三角板为求解问题提供的数量依据。把握数学问题的本质,体现数形结合。2.试题解法基于数学活动经验,关注学生的
12、学习过程 以上试题的一个基本特点是:基于学生数学活动经验,关注“过程与方法”在获得、应用数学知识的过程中的重要作用。解决以上试题的数学活动经验主要包括 2 个层次:第一,来源于日常生活经验,如对的“三角板”的直接认识;第二,建立在日常生活经验基础之上的探究活动,如例2将一把含30角的直角三角板的直角顶点置于平面直角坐标系的原点处旋转,探索在旋转过程中三角板与抛物线的交点的连线段总经过一个固定的点(,)。3.试题考查注重理性数学思维,体现能力立意命题理念 数学不仅是一种重要的“工具”和“方法”,而是人们学习的一种思维模式。在解决以上试题的过程中,学生要通过观察、实验、归纳、类比等获得猜想,并在解决问题的过程中进行合情推理,有条理地表达自己的思考过程。如例 3 以二次函数为载体,设置了一块等腰直角三角板放在直角坐标系第一象限,斜靠在两坐标轴上的情境,要求探索是否还存在一点,使仍然是以为直角边的等腰直角三角形,要用分类思考方法。强调了数学素养,以能力立意,以考查学生的思维品质为出发点和归宿,还考虑到学生升入高中学习所必备的数学知识和素质,考查了进一步学习的潜质。考试题倍受命题者的青昧大量出现在各地的中考试题中本文拟从年中考第一象限过点的双曲线为在轴取一点过点作直线的垂线以直线为对称轴和含角的直角三角形的性质易得的取值范围是或优秀学习资料欢迎下载