《基于模糊PID控制的仿真设计(完整资料).doc》由会员分享,可在线阅读,更多相关《基于模糊PID控制的仿真设计(完整资料).doc(167页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、基于模糊PID控制的仿真设计(完整资料)(可以直接使用,可编辑 优秀版资料,欢迎下载)基于模糊PID的控制器的仿真设计学院: 信息学院专业:姓名:指导老师:自动化赵娟学号:职称:08010402144彭文亮讲师中国珠海二一二年五月北京理工大学珠海学院毕业设计诚信承诺书本人郑重承诺:我所呈交的毕业设计基于模糊 PID的控制器的仿真设计是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。承诺人签名:日期:年月基于模糊PI的控制器的仿真设计摘要PD(比例积分微分)控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精
2、确数学模型的控制系统。而对于一些多变量、非线性、时滞的系统,传统的PI控制器并不能达到预期的效果。随着模糊数学的发展,模糊控制的思想逐渐得到控制工程师们的重视,各种模糊控制器也应运而生。而单纯的模糊控制器有其自身的缺陷控制效果很粗糙、控制精度无法达到预期标准。但利用传统的PD控制器和模糊控制器结合形成的模糊自适应的PD控制器可以弥补其缺陷;它将系统对应的误差和误差变化率反馈给模糊控制器进而确定相关参数,保证系统工作在最佳状态,实现优良的控制效果。论文介绍了参数自适应模糊ID控制器的设计方法和步骤。并利用MAA 中的SIMLINK 和模糊逻辑推理系统工具箱进行了控制系统的仿真研究,并简要地分析了
3、对应的仿真数据。关键词:经典PID控制模糊控制自适应模糊I控制器参数整定 MATLAB仿真he simuatn an sign-basefzzy PconrolABTRACID(Proportion Inegaion Difeentiation) cotrol,wihlt ofvntas inclng siple stutur, goodsility nd igh reliability, i qute suible t stabli speialyth no syste wichaccurate mathematial moe availabe ad nedd.Hower, akenmult
4、ivaible, onlinear an ti-lag into consideratio, trditional PIDcotroller an not eac hexpted ffect. longwithte evelet of FuzzyMatemati, cono engineersgaduall ay much ttentio o th ida f Fuzzy Conrl, tus rmg einnti of uzzy ontollrs。However,imple fuzy crollr hs itowndfect, where cotrol efectis quite cor a
5、nd the cotrolprecisic not rech the peed level。Therefore, the Fz aptivePI Controle s created by king adantgeof the suroty f PD Conrllend Fuzyntroler. Taken this contrler i se, the crrspondngerro a its iffrenia error f ecntrol system can be edbaced the Fuzz Logic Contolr。 oever, thetreepameters of PID
6、 Controlle is etemined lineough fuzzifaion, fuzy esoning defuzzification te uzysystem omaintain eter oingcodion than te trditionPIDcontolr.Mnhil,theeignethodnd geerl steps r iodced o th Prmr selfsettn u ICotroler Evetualy, the Fz feec wdoci.c ystemToolbandSIMULINK box re used to imulte Cnto Sysm。h r
7、eltfte imlaon sh thaSlf-oraziFuzzyControl Sysem cangeta beter effe ta te Clssica PID contoled idety. eywors:lassic PD cotrol uzzy Coolaraete tunin te uzzy AptiveP orlle MLB smulato目录摘要BSTACTII1绪论1.1本设计的目的、意义及应达到的技术要求11.本设计在国内外的发展概况及存在的问题21。3研究的主要内容32方案选择及可行性分析2.1方案的选择42。2方案可行性分析53PID算法及参数介绍63.1PD算法介
8、绍63。2 PID参数对系统性能的影响4设计原理104.1模糊逻辑与模糊控制的概念1.2模糊控制器的基本结构和工作原理04。3模糊推理方式12.4模糊控制器的结构34.5模糊控制器的隶属函数146模糊推理方法205方案设计21模糊ID控制器组织结构和算法的确定52模糊PID控制器模糊部分设计236模糊PID控制器的MALAB仿真6。1。模糊控制部分的uzy irene sysm仿真287结论37参考文献38谢辞39附录401绪论随着越来越多的新型自动控制应用于实践,其控制理论的发展也经历了经典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机。自动控制系统可分为
9、开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构加到被控系统上,控制系统的被控量,经过传感器、变送器通过输入接口送到控制器。不同的控制系统,传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器,电加热控制系统要采用温度传感器.目前,PID控制及其控制器或智能ID控制器,仪表,已经很多,产品已在工程实际中得到了广泛的应用。比如,工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。PD控制器可以根据PID控制原理对整个控制系统
10、进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。经典PD控制的调节器控制规律为比例、积分、微分控制,简称PD控制,又称ID调节。PD控制器问世至今已有近70年历史,它因结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一,现今也在很多领域有应用.尤其是当被控对象的结构和参数不能完全掌握或得不到精确的数学模型,控制理论的其它技术难以采用,系统控制器的结构和参数又必须依靠经验和现场调试来确定时,应用PI控制技术最为方便。根据统计数据,全世界过程控制领域使用的控制器84%仍是纯PID调节器,若改进型包含在内则超过9.1。本设计的目的、意义及应达到的技术要求ID 控制是最早发
11、展起来的控制策略之一。由于其算法简单,鲁棒性好和可靠性高被广泛应用于工业过程控制。在PID 控制中。一个至关重要的问题是PID参数(比例系数、积分时间、微分时间)的整定。参数整定的优劣不但会影响到控制质量,而且还会影响到控制系统的稳定性和鲁棒性。而实际工业生产过程往往具有非线性、时变等不确定性干扰。常规PID控制器经常出现参数整定不良、控制性能欠佳,且对运行工况的适应性较差等情况。针对以上问题,长期以来,人们一直在寻求I 控制器的自动整定技术,以适应复杂的工况和高指标的控制要求。模糊控制是一类应用模糊集合理论的控制方法,不需要被控对象的精确数学模型,因而特别适用于一些大滞后、时变、非线性的复杂
12、系统。将模糊控制和传统PID 控制相结合组成模糊PID控制器,不但具有PID 控制精度高等优点,又兼有模糊控制灵活、适应性强的优点,是近年来控制领域十分活跃的一支分支。本设计的技术要求以及优点:1模糊控制完全在操作人员经验控制基础上实现对系统的控制,无需建立数学模型,能够解决不确定系统的一种有效途径.2模糊控制具有较强的鲁棒性,被控对象参数的变化对模糊控制的影响不明显,可用于非线性、时变、时滞的系统,并能获得优良的控制效果。3.由离散计算得到控制查询表,提高了控制系统的实时性、快速性。4控制的机理符合人们对过程控制作用的直观描述和思维逻辑,是人工智能的再现,属于智能控制。1。2本设计在国内外的
13、发展概况及存在的问题国内在模糊控制方面也同样取得了显著成果。986年,都志杰等人用单片机研制了工业用模糊控制器。随后,何钢、能秋思、刘浪舟等人相继将模糊控制方法成功地应用在碱熔釜反应温度、玻璃窑炉等控制系统中。在社会生活领域中体现在模糊控制技术在家电中的应用,所谓模糊家电,就是根据人的经验,在电脑或者芯片的控制下实现可模仿人的思维进行操作的家用电器.几种典型的模糊家电产品如下:模糊电视机这类电视机可根据室内光线的强弱调整电视机的亮度,根据人与电视机的距离自动调整音量,同时能够自动调节电视机的色度、清晰度和对比度。模糊空调器模糊空调器可以灵敏地控制室内的温度.日本研制了一种模糊空调器,利用红外线
14、传感器识别房间信息(人数、温度、大小、门开关等),从而快速调整室内温度,提高了舒适感.模糊微波炉日本夏普公司生产的E-SEI型微波炉,内部装有2个传感器,这些传感器能对食物的重量、高度、形状和温度进行测量,并利用这些信息自动选择化霜、再热、烧烤和对流4种工作方式,并自动决定烹制时间。模糊洗衣机以我国生产的小天鹅模糊控制全自动洗衣机为例它能够自动识别洗衣物人重量、质地、污脏性质和程度采用模糊控制技术来选择合适的水位、洗涤时间、水流程序等,其性能已经达到国外同类产品的水平。模糊电动剃刀日本三洋、松下公司推出了模糊控制电动剃刀通过利用传感器分析胡须的生长情况和面部轮廓自动调整刀片并选择最佳的剃削速度
15、。在工业炉方面、石化方面、煤矿行业、食品加工行业领域模糊控制应用也很广泛.模糊控制主要有以下几个发展方向:()FuzPID复合控制FuzzyPID复合控制是将模糊控制与常规PID控制算法相结合的控制方法,以此达到较高的控制精度。它比单用模糊控制和单用ID控制均具有更好的控制性能。(2)自适应模糊控制自适应模糊控制能自动地对模糊控制规则进行修改和完善,以提高控制系统的性能。它具有自适应、自学习的能力,对于那些具有非线性、大时滞、高阶次的复杂系统有着更好的控制效果。(3)专家模糊控制专家模糊控制是将专家系统技术与模糊控制相结合的产物。引入专家系统可进一步提高模糊控制的智能水平。专家模糊控制保持了基
16、于规则的方法和模糊集处理带来的灵活性,同时又把专家系统技术的知识表达方法结合进来,能处理更广泛的控制问题。(4)神经模糊控制模糊控制规则和隶属函数的获取与确定是模糊控制中的“瓶颈”问题。神经模糊控制是基于神经网络的模糊控制方法。该方法利用神经网络的学习能力,来获取并修正模糊控制规则和隶属函数。(5)多变量模糊控制多变量模糊控制有多个输入变量和输出变量,它适用于多变量控制系统。多变量耦合和“维数灾问题是多变量模糊控制需要解决的关键问题.13研究的主要内容在工业控制中,PID控制是工业控制中最常用的方法。为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用模糊控制理论的方法。模糊控制
17、已成为智能自动化控制研究中最为活跃而富有成果的领域。其中,模糊PD控制技术扮演了十分重要的角色,并目仍将成为未来研究与应用的重点技术之一。本毕业设计基于模糊 PID的控制器的仿真设计,要求具有良好的性能。2方案选择及可行性分析。1方案的选择方案一:经典PD控制系统:P控制:这类控制输出的变化与输入控制器的偏差成比例关系,输入偏差越大输出越大。单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定剩余误差存在的场合。在工业生产中,比例控制规律使用较为普遍,它是控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用.但是不能最终
18、消除剩余误差的缺点限制了它的单独使用。PI控制:克服剩余误差的办法是在比例控制的基础上加上积分控制。积分控制器的输出与输入偏差对时间的积分成正比。它的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积,一直到偏差为零,累积才会停止。所以,积分控制可以消除剩余误差。P控制:当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟。因此要引入比例、微分作用,即PD控制。它比单纯的比例作用更快.尤其是对容量滞后大的对象,可以减小偏差的幅度,节省控制时间显著改善控制质量。PID比例积分微分:最为理想的控制当属比例-积分-微分控制,即PID控制。它
19、集三者之长,既有比例作用的及时迅速,又有积分作用的消除剩余误差能力,还有微分作用的超前控制功能。当偏差扰动出现时,微分立即大幅度动作,抑制偏差的这种跃变,比例也同时起消除偏差的作用,使振荡幅度减小.由于比例作用是持久和起主要作用的控制规律,积分作用可以慢慢把剩余误差克服掉,因此可使系统比较稳定,只要,三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用ID控制技术。然而伴随着新的控制系统的不断涌现,ID控制策略在控制非线性、时变、强耦合及参数和结构不确定的复杂过程时,控制效果
20、不理想。因此,它的应用受到了很大程度上的限制.方案二:模糊D控制系统利用人工智能的方法将操作人员的调整经验作为知识存入计算机中,根据现场实际情况,计算机自动调整D参数,即智能PI控制器。这种控制器把古典的ID控制与先进的专家系统相结合,实现系统的最佳控制。这种控制必须精确地确定对象模型,首先将操作人员(专家)长期实践积累的经验知识用控制规则模型化,然后运用推理便可对PI参数实现最佳调整.由于操作者经验不易精确描述,控制过程中各种信号量以及评价指标不易定量表示,模糊理论是解决这一问题的有效途径,所以人们运用模糊数学的基本理论和方法,把规则的条件、操作用模糊集表示,并把这些模糊控制规则以及有关信息
21、(如评价指标、初始ID参数等)作为知识存入计算机知识库中,然后计算机根据控制系统的实际响应情况(即专家系统的输入条件),运用模糊推理,即可自动实现对ID参数的最佳调整,这就是模糊自适应PI控制。模糊自适应PD控制器目前有多种结构形式,但其工作原理基本一致.自适应模糊I控制器以误差和误差变化作为输入,可以满足不同时刻的和对ID参数自整定的要求。利用模糊控制规则在线对PD参数进行修改,便构成了自适应模糊PID控制器,其结构如图2。1所示.图2.1 自适应模糊PID控制器结构图PID参数模糊自整定是找出ID三个参数与和之间的模糊关系,在运行中通过不断检测,根据模糊控制原理来对3个参数进行在线修改,以
22、满足不同和时对控制参数的不同要求,而使被控对象有良好的动、静态性能。综上,比较两种方案可知,带有大扰动、时滞、时变的系统,采用传统的PID控制器参数整定比较困难,最佳参数容易漂移,使用模糊自整定PI控制器往往可以克服传统PI控制器的不足。2.2方案可行性分析从系统的稳定性、响应速度、超调量和稳态精度等各方面来考虑,的作用如下:(1)比例系数的作用是加快系统的响应速度,提高系统的调节精度.越大,系统的响应速度越快,系统的调节精度越高,但易产生超调,甚至会导致系统不稳定.取值过小,则会降低调节精度,使响应速度缓慢,从而延长调节时间,使系统静态、动态特性变坏。(2)积分作用系数的作用是消除系统的稳态
23、误差。越大,系统的静态误差消除越快,但过大,在响应过程的初期会产生积分饱和现象,从而引起响应过程的较大超调。若过小,将使系统静态误差难以消除,影响系统的调节精度。(3)微分作用系数的作用是改善系统的动态特性,其作用主要是在响应过程中抑制偏差向任何方向的变化,对偏差变化进行提前预报。但过大,会使响应过程提前制动,从而延长调节时间,而且会降低系统的抗干扰性能。3PID算法及参数介绍3。 PD算法介绍1位移式ID算法被控对象执行机构 D(s)x(t)e(t)y(t)图3。 ID控制流图其控制原则如公式:其中p比例系数Ti-积分时间常数T微分时间常数e(t)-偏差u(t)-控制量经离散化得公式:调节器
24、输出u(k)与跟过去所有偏差信号有关,计算机需要对e()进行累加,运算工作量很大,而且计算机故障可能是u(k)做大幅振荡,这种情况往往是控制很不方便,再有些场合可能会造成严重的事故。另外,控制器的输出u(k)对应的是执行机构的实际位置:如果计算机出现故障,u()的大幅度变化会引起执行机构位置的大幅度变化,因此,在实际的控制系统中不太常用这种方法。增量式PID算法依据位移式PID算法,可推理出公式:式中e()第k次采样时的偏差值;e(k-1)-第k-1次采样时的偏差值;u(k)第次采样时调节器的输出;K-比例系数;,依据算法形式,显然可以看出增量式PD算法和位置式算法相比具有以下几个优点:首先,
25、增量式算法只与e(k)、(k1)、e()有关,不需要进行累加,不易引起积分饱和,因此能获得较好的控制效果.其次,在位置式控制算法中,由手动到自动切换时,必须首先使计算机的输出值等于阀门的原始开度,才能保证手动到自动的无扰动切换,这将给程序设计带来困难。而增量式设计只与本次的偏差值有关,与阀门原来的位置无关,因而易于实现手动自动的无扰动切换。再次,增量式算法中,计算机只输出增量,误动作影响小。必要时可加逻辑保护,限制或禁止故障时的输出.为适应更多的应用领域,PD控制器也有了多种算法。3积分分离PI算法积分分离PI算法基本思想是:设置一个积分分离阈值,当|e()|时,采用PID控制,以便于消除静差
26、,提高控制精度;当()时,采用PD控制。其对应的算法s是公式:其中,为逻辑变量,其取值原则为:公式:1()0()对同一控制对象,分别采用普通I控制和积分分离PID控制,如图。2:图32 PI控制和积分分离ID控制比较其中-普通PID控制效果 2积分分离PID控制效果显然,积分分离的PI比普通的PID的控制效果好。4 不完全微分P算法在ID控制器的输出端再串联一阶惯性环节(比如低通滤波器)来抑制高频干扰,平滑控制器的输出,这样就组成了不完全微分ID控制,见图3.PID调节器(s)图3.3 不完全微分PID控制器其控制算法,如公式2-5所示。其中,通过这样的算法可以延长微分作用的时间,见图3.。(
27、) (b)图3。4 不完全微分PD和完全微分PID控制特性比较不完全微分ID控制中的微分作用能缓慢地维持多个采样周期,使一般的工业执行机构能较好地跟踪微分作用的输出.因此,抗干扰能力较强,在一些扰动频繁的场合应用十分普遍。3.2 D参数对系统性能的影响1。比例系数对系统性能的影响比例系数加大,使系统的动作灵敏,速度加快,稳态误差减小。Kp偏大,振荡次数加多,调节时间加长。p太大时,系统会趋于不稳定。Kp太小,又会使系统的动作缓慢。可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。如果Kd的符号选择不当,对象状态(p值)就会离控制目标的状态(v值)越来越远,如果出现这样的情况Kp的符
28、号就一定要取反。2.积分控制对系统性能的影响积分作用使系统的稳定性下降,Ti小(积分作用强)会使系统不稳定,但能消除稳态误差,提高系统的控制精度。3微分控制Td对系统性能的影响微分作用可以改善动态特性,Td偏大时,超调量较大,调节时间较短。Td偏小时,超调量也较大,调节时间也较长.只有Td合适,才能使超调量较小,减短调节时间。4PID控制器参数整定D控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PI控制器的比例系数、积分时间和微分时间的大小。PD控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法.它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法
29、所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。I控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数都需要在实际运行中进行最后调整与完善.现在一般采用的是临界比例法.设计原理4.1模糊逻辑与模糊控制的概念模糊控制相关概念 “模糊逻辑”的概念,其根本在于区分布尔逻辑或清晰逻辑,用来定义那些含混不清,无法量化或精确化的问题,对于冯?诺依
30、曼开创的基于“真假推理机制,以及因此开创的电子电路和集成电路的布尔算法,模糊逻辑填补了特殊事物在取样分析方面的空白。在模糊逻辑为基础的模糊集合理论中,某特定事物具有特色集的隶属度,他可以在“是”和“非”之间的范围内取任何值.而模糊逻辑是合理的量化数学理论,是以数学基础为根本去处理这些不确定、不精确的信息.模糊控制是基于模糊逻辑描述的一个过程的控制算法。它是用模糊数学的知识模仿人脑的思维方式,根据模糊现象进行识别和判决,给出精确控制量,进而对被控对象进行控制的。对于参数精确已知的数学模型,我们可以用波特图或奈克斯特图来分析其过程以获得精确的设计参数。而对一些复杂系统,如粒子反应,气象预报等设备,
31、建立一个合理而精确的数学模型是非常困难的.对于电力传动中的变速矢量控制问题,尽管可以通过测量得知其模型,但由于其多变量且非线性变化的特点,精确控制也是非常困难的。模糊控制技术依据与操作者的实践经验和直观推断,也依靠设计人员和研发人员的经验和知识积累.它无需建立设备模型,因此基本上是自适应的,具有很强的鲁棒性.历经多年发展,已有许多成功应用模糊控制理论的案例,如uterford、Crtr应用于冶金炉和热交换器的控制装置.4.2模糊控制器的基本结构和工作原理模糊控制器有如下结构,图4.1呈现了其基本控制流程。模糊化被控制对象模糊推理解模糊知识库图4. 1模糊控制器控制流程F为了了解模糊控制器到工作
32、原理,图4.2列出其结构框图。知识库模糊化接口被控制对象模糊推理机解模糊数据库图4. 2模糊控制器结构规律库显然,模糊控制器到主要由模糊化接口、知识库、模糊推理机、解模糊接口四部分组成,通过单位负反馈来引入误差,并以此为输入量进行控制动作。模糊控制器各部分组成1 模糊化接口(Fuy intface)模糊控制器的输入必须通过模糊化才能用于控制输出的求解,因此它实际上是模糊控制器的输入接口.它的主要作用是将真实的确定量输入转换为一个模糊矢量。对于一个模糊输入变量,其模糊子集通常可以作如下方式划分:(1)负大,负小,零,正小,正大=, N, ZO,S, PB (2)负大,负中,负小,零,正小,正中,
33、正大=NB,M, NS, Z, PS, PM,PB (3)大,负中,负小,零负,零正,正小,正中,正大NB,NM, NS, NZ, Z, S,PM, PB 模糊化接口接受到输入只有误差信号(t),由e()再生成误差变化率或误差到差分e(t),模糊化接口主要完成以下两项功能:。论域变换2.模糊化用三角型隶属度函数表示如图43所示。图模糊子集和模糊化等级. 知识库(Knowlege BasKB)图4.三角型隶属度函数表示知识库由数据库和规则库两部分构成。(1)数据库(DaBseDB):数据库所存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值(即经过论域等级离散化以后对应值的集合),若论域为连
34、续域则为隶属度函数.在规则推理的模糊关系方程求解过程中,向推理机提供数据。(2)规则库(RuleBaseRB):模糊控制器的规则司基于专家知识或手动操作人员长期积累的经验,它是按人的直觉推理的一种语言表示形式。模糊规则通常有一系列的关系词连接而成,如ih、el、lso、end、or等,关系词必须经过“翻译”才能将模糊规则数值化。最常用的关系词为ifthen、also,对于多变量模糊控制系统,还有ad等.例如,某模糊控制系统输入变量为(误差)和(误差变化),它们对应的语言变量为E和C,可给出一组模糊规则:R1: FEisNB a C is en Uis B R: IFE s adEC i Sth
35、en U s 通常把if部分称为“前提部,而the部分称为“结论部”,其基本结构可归纳为If A ad B hen C,其中A为论域U上的一个模糊子集,B是论域上的一个模糊子集。根据人工控制经验,可离线组织其控制决策表R, R是笛卡儿乘积集上的一个模糊子集,则某一时刻其控制量由下式给出:式中 模糊直积运算; 模糊合成运算。规则库是用来存放全部模糊控制规则的,在推理时为“推理机”提供控制规则。规则条数和模糊变量的模糊子集划分有关,划分越细,规则条数越多,但并不代表规则库的准确度越高,规则库的“准确性还与专家知识的准确度有关。推理与解模糊接口(Iferene ad Deuz-erface)推理是模
36、糊控制器中,根据输入模糊量,由模糊控制规则完成模糊推理来求解模糊关系方程,并获得模糊控制量的功能部分。在模糊控制中,考虑到推理时间,通常采用运算较简单的推理方法.最基本的有Zadeh近似推理,它包含有正向推理和逆向推理两类.正向推理常被用于模糊控制中,而逆向推理一般用于知识工程学领域的专家系统中。推理结果的获得,表示模糊控制的规则推理功能已经完成.但是,至此所获得的结果仍是一个模糊矢量,不能直接用来作为控制量,还必须作一次转换,求得清晰的控制量输出,即为解模糊。通常把输出端具有转换功能作用的部分称为解模糊接口。综上所述,模糊控制器实际上就是依靠微机(或单片机)来构成的。它的绝大部分功能都是由计
37、算机程序来完成的.随着专用模糊芯片的研究和开发,也可以由硬件逐步取代各组成单元的软件功能。43模糊推理方式TakagSgen模糊模型(高木关野)传统的模糊系统为Mamdani模糊模型,输出为模糊量。,其函数形式为: = =x+b它与Mman模型的区别在于:(1)输出变量为常量或线性函数;(2)输出为精确量.gen模糊模型输出隶属函数为consnt或ler,也称TS模糊模型,旨在开发从给定的输入-输出数据集合产生模糊规则的系统化方法。此类方法将解模糊也结合到模糊推理中,故输出为精确量。这是因为Sgeno型模糊规则的后件部分表示为输入量的线性组合.它是最常用的模糊推理算法。与amdani型类似,其
38、中输入量模糊化和模糊逻辑运算过程完全相同,主要差别在于输出隶属函数的形式.典型的零阶Sugeno型模糊规则的形式:f xis A any isB then =k.式中,x和y为穿入语言变量,A和B为推理前件的模糊集合,z为输出语言变量,k为常数。更为一般的一阶ueno模型规则形式为:Ifx is A d yis tezpx+y+r.当然,以上两种解模糊方法各有千秋。由于Madni型模糊推理规则的形式符合人们的思维和语言表达的习惯。因而能够方便地表达人类的知识,但存在计算复杂、不利于数学分析的缺点,Sugeo型模糊推理则具有计算简单,利于数学分析的优点,是具有优化与自适应能力的控制器或模糊建模工
39、具。4。4模糊控制器的结构在确定性控制系统中,根据控制器输出的个数,可分为单变量控制系统和多变量控制系统。在模糊控制系统中也可类似地划分为单变量模糊控制和多变量模糊控制。1 单变量模糊控制器(Sge VariaeFuzyControlrSVFC)在单变量模糊控制器中,将其输入变量的个数定义为模糊控制的维数。(1)一维模糊控制器如图4.4所示,一维模糊控制器的输入变量往往选择为受控量和输入给定的偏差量.由于仅仅采用偏差值,很难反映过程的动态特性品质,因此,所能获得的系统动态性能是不能令人满意的。这种一维模糊控制器往往被用于一阶被控对象。图44一维模糊控制器(2)二维模糊控制器如图4。5所示,二维
40、模糊控制器的两个输入变量基本上都选用受控变量和输入给定的偏差E和偏差变化EC,由于它们能够较严格地反映受控过程中输出变量的动态特性,因此,在控制效果上要比一维控制器好得多,也是目前采用较广泛的一类模糊控制器。图45二维模糊控制器(3)三维模糊控制器如图4。6所示,三维模糊控制器的三个输入变量分别为系统偏差量、偏差变化量EC和偏差变化的变化率EC.由于这些模糊控制器结构较复杂,推理运算时间长,因此除非对动态特性的要求特别高的场合,一般较少选用三维模糊控制器。图.6三维模糊控制器模糊控制系统所选用的模糊控制器维数越高,系统的控制精度也就越高.但是维数选择太高,模糊控制规律就过于复杂,这是人们在设计
41、模糊控制系统时,多数采用二维控制器的原因。5模糊控制器的隶属函数在Matb中已经开发出了11种隶属函数,即双S形隶属函数(digmf)、联合高斯型隶属函数(au2mf)、高斯型隶属函数(gaussmf)、广义钟形隶属函数(bm)、II型隶属函数(pif)、双形乘积隶属函数(psimf)、S状隶属函数(smf)、S形隶属函数(igmf)、梯形隶属函数(tapf)、三角形隶属函数(trimf)、Z形隶属函数(zm)。在模糊控制中应用较多的隶属函数有以下6种隶属函数。()高斯型隶属函数高斯型隶属函数(如图4.7)由两个参数和c确定:其中参数b通常为正,参数c用于确定曲线的中心。ab表示为图4高斯型隶
42、属函数(=1)()广义钟型隶属函数广义钟型隶属函数(如图)由三个参数,,c确定:其中参数通常为正,参数c用于确定曲线的中心。alab表示为图4.8广义钟形隶属函数(M=)() S形隶属函数S形函数sigmf(x,a c)(如图4。)由参数a和c决定:其中参数a的正负符号决定了S形隶属函数的开口朝左或朝右,用来表示“正大”或“负大”的概念。Malab表示为 :sim(,a,c)图4.S形隶属函数(M=3)(4)梯形隶属函数梯形曲线(如图.10)可由四个参数a,,,确定:其中参数a和d确定梯形的“脚,而参数b和c确定梯形的“肩膀. lb表示为:tapmf(,,b,c,) 图4.0梯形隶属函数(M=
43、4) ()三角形隶属函数三角形曲线(如图。11)的形状由三个参数a,b,确定:其中参数a和c确定三角形的“脚”,而参数b确定三角形的“峰。 atlb表示为tf(x,a,b,c)图4.11三角形隶属函数(M)()形隶属函数这是基于样条函数的曲线(如图.1),因其呈现形状而得名.参数和b确定了曲线的形状。Malab表示为z(x,a,b)图41Z形隶属函数(M=6)46模糊推理方法通过模糊推理得到的结果是一个模糊集合.但在实际模糊控制中,必须要有一个确定值才能控制或驱动执行机构.将模糊推理结果转化为精确值的过程称为反模糊化。常用的反模糊化有三种:(1)最大隶属度法选取推理结果模糊集合中隶属度最大的元素作为输出值,即,。如果在输出论域V中,其最大隶属度对应的输出值多于一个,则取所有具有最大隶属度输出的平均值,即:N为具有相同最大隶属度输出的总数。最大隶属度法不考虑输出隶属度函数的形状,只考虑最大隶属度处的输出值。因此,难免会丢失许多信息。它的突出