《第1章 传感器的特性优秀课件.ppt》由会员分享,可在线阅读,更多相关《第1章 传感器的特性优秀课件.ppt(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第1章 传感器的特性2023/5/19第1 页,本讲稿共49 页1.1 传感器的组成及分类1.1.1 传感器的组成 传感器的作用主要是感受和响应规定的被测量,并按一定规律将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成:由敏感元件(有时又称为预变换器)和变换元件(有时又称为变换器)两部分组成,见图1.1。图1.1 传感器的一般组成 2023/5/19第2 页,本讲稿共49 页1.敏感元件在具体实现非电量到电量间的变换时,并非所有的非电量都能利用现有的技术手段直接变换为电量,而必须进行预变换:即先将待测的非电量变为易于转换成电量的另一种非电量。这种能完成预变换的器件称之为敏感元件。
2、2.变换器能将感受到的非电量变换为电量的器件称为变换器。例如:可以将位移量直接变换为电容、电阻及电感的电容变换器、电阻及电感变换器;能直接把温度变换为电势的热电偶变换器。显然变换器是传感器不可缺少的重要组成部分。2023/5/19第3 页,本讲稿共49 页如果把传感器看作一个二端口网络,则其输入信号主要是被测的物理量(如长度、力)等时,必然还会有一些难以避免的干扰信号(如温度、电磁信号)等混入。严格地说,传感器的输出信号可能为上述各种输入信号的复杂函数。就传感器设计来说,希望尽可能做到输出信号仅仅是(或分别是)某一被测信号的确定性单值函数,且最好呈线性关系。对使用者来说,则要选择合适的传感器及
3、相应的电路,保证整个测量设备的输出信号能唯一、正确地反映某一被测量的大小,而对其它干扰信号能加以抑制或对不良影响能设法加以修正。2023/5/19第4 页,本讲稿共49 页传感器可以做得很简单,也可以做得很复杂;可以是无源的网络,也可以是有源的系统;可以是带反馈的闭环系统,也可以是不带反馈的开环系统;一般情况下只具有变换的功能,但也可能包含变换后信号的处理及传输电路甚至包括微处理器CPU。因此传感器的组成将随不同情况而异。1.1.2 传感器的分类 传感器的分类方法很多,国内外尚无统一的分类方法。一般按如下几种方法进行分类。1.按输入被测量分类这种方法是根据输入物理量的性质进行分类。表1.1给出
4、了传感器输入的基本被测量和由此派生的其它量。2023/5/19第5 页,本讲稿共49 页表1.1 传感器输入被测量2023/5/19第6 页,本讲稿共49 页 2.按工作原理分类这种分类方法以传感器的工作原理作为分类依据,见表1.2。表1.2 传感器按工作原理的分类2023/5/19第7 页,本讲稿共49 页3.按输出信号形式分类 这种分类方法是根据传感器输出信号的不同来进行分类,见表1.3。2023/5/19第8 页,本讲稿共49 页1.2 传感器的基本特性 可通过两个基本特性即传感器的静态特性和动态特性来表征一个传感器性能的优劣。静态特性:当被测量的各个值处于稳定状态时,传感器的输出值与输
5、入值之间关系的数学表达式、曲线或数表。动态特性:指当被测量随时间变化时,传感器的输出与输入之间关系的数学表达式、曲线或数表。2023/5/19第9 页,本讲稿共49 页静态校准:借助实验的方法确定传感器静态特性的过程。校准特性:校准得到的静态特性。1.2.1 静态特性 静特性指标:线性度 迟滞 重复性 精度 灵敏度 阈值 分辨力 漂移2023/5/19第10 页,本讲稿共49 页1.线性度人们为了标定和数据处理的方便,总是希望传感器的输出与输入关系呈线性,并能准确无误地反映被测量的真值,但实际上这往往是不可能的。假设传感器没有迟滞和蠕变效应,其静态特性可用下列多项式来描述:2023/5/19第
6、1 1 页,本讲稿共49 页式中:x输入量;y输出量;a0零位输出;a1传感器的灵敏度,常用k表示;a2,a3,an非线性项的待定常数。式(1.1)即为传感器静态特性的数学模型。该多项式可能有四种情况,如图1.2所示。(1.1)2023/5/19第12 页,本讲稿共49 页设ai0,a00。1)理想线性这种情况见图1.2(a)。此时a0=a2=a3=an=0 于是:y=a1x(1.2)因为直线上任何点的斜率都相等,所以传感器的灵敏度为:a1=k=常数(1.3)图1.2 传感器静态特性曲线 2023/5/19第13 页,本讲稿共49 页2)输出-输入特性曲线关于原点对称 如图1.2(b)。此时在
7、原点附近相当范围内曲线基本成线性,式(1.1)只存在奇次项:y=a1x+a3x3+a5x5+(1.4)3)输出-输入特性曲线不对称 这时式(1.1)中非线性项只是偶次项,即:y=a1x+a2x2+a4x4+(1.5)对应曲线如图1.2(c)所示。图1.2 传感器静态特性曲线 图1.2 传感器静态特性曲线 2023/5/19第14 页,本讲稿共49 页4)普遍情况 普遍情况下的表达式就是式(1.1),对应的曲线如图1.2(d)所示。当传感器特性出现如图1.2中(b)、(c)、(d)所示的非线性情况时,就必须采取线性化补偿措施。图1.2 传感器静态特性曲线 实际运用时,传感器数学模型的建立究竟应取
8、几阶多项式,是一个数据处理问题。建立数学模型的古典方法是分析法。该法太复杂,有时甚至难以进行。利用校准数据来建立数学模型,是目前普遍采用的一种方法,它很受人们重视,并得到了发展。2023/5/19第15 页,本讲稿共49 页 传感器的静态特性就是在静态标准条件下,利用校准数 据确立的。静态标准条件是指没有加速度、振动和冲击(除非这些参数本身就是被测物理量),环境温度一般为室温205,相对湿度不大于85%,大气压力为101+-7KPa的情况。在这样的标准工作状态下,利用一定等级的校准设备,对传感器进行往复循环测试,得到的输出-输入数据一般用表格列出或画成曲线。2023/5/19第16 页,本讲稿共49 页 通常测出的输出-输入校准曲线与某一选定拟合直线不吻合的程度,称之为传感器的“非线性误差”,或称为“线性度”。用相对误差表示其大小,即传感器的正、反行程平均校准曲线与拟合直线之间的最大偏差绝对值对满量程(F.S.)输出之比(%):(1.6)式中:L非线性误差(线性度);|(yL)max|输出平均值与拟合直线间的最大偏差绝对值;yF.S.满量程输出。F.S.是英文full scale(满量程)的缩写。2023/5/19第17 页,本讲稿共49 页