计算机网络-第五章传输层.ppt

上传人:wuy****n92 文档编号:91086797 上传时间:2023-05-21 格式:PPT 页数:133 大小:1.12MB
返回 下载 相关 举报
计算机网络-第五章传输层.ppt_第1页
第1页 / 共133页
计算机网络-第五章传输层.ppt_第2页
第2页 / 共133页
点击查看更多>>
资源描述

《计算机网络-第五章传输层.ppt》由会员分享,可在线阅读,更多相关《计算机网络-第五章传输层.ppt(133页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第5章 运 输 层 Transport Layer四川师范大学计算机科学学院 College of Computer Science Sichuan Normal University 刘霞本章主要内容n 运输协议(transport protocol)是整个网络体系结构中的关键之一。n 5.1 运输协议概述n 5.2 用户数据报协议 UDPn 5.3 传输控制协议 TCP 概述n 5.4 可靠传输的工作原理n 5.5 TCP 报文段的首部格式n 5.6 TCP 可靠传输的实现n 5.7 TCP的流量控制n 5.8 TCP 的拥塞控制n 5.9 TCP 的运输连接管理重点1.重点介绍UDP协议

2、和TCP协议2.端口概念3.TCP的各种机制(面向连接的可靠服务、序号、确认、流量控制、拥塞控制等)4.TCP连接管理(三次握手和两次释放)n 从通信和信息处理的角度看,运输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同时也是用户功能中的最低层。物理层网络层运输层应用层数据链路层面向信息处理面向通信用户功能网络功能5.1 运输协议概述 既然IP能将源主机发送出的分组按照首部中的目的地址送交到目的主机,那么为什么还需要运输层呢?运输层为相互通信的应用进程提供了逻辑通信 54321运输层提供应用进程间的逻辑通信主机 A 主机 B应用进程 应用进程路由器 1 路由器 2AP1LAN2

3、WANAP2AP3AP4IP 层LAN1AP1AP2AP4端口端口54321IP 协议的作用范围运输层协议 TCP 和 UDP 的作用范围AP3应用进程之间的通信n 两个主机进行通信实际上就是两个主机中的应用进程互相通信。n 应用进程之间的通信又称为端到端的通信。n 运输层的一个很重要的功能就是复用和分用。应用层不同进程的报文通过不同的端口向下交到运输层,再往下就共用网络层提供的服务。n“运输层提供应用进程间的逻辑通信”。“逻辑通信”的意思是:运输层之间的通信好像是沿水平方向传送数据。但事实上这两个运输层之间并没有一条水平方向的物理连接。运输层协议和网络层协议的主要区别 应用进程 应用进程IP

4、 协议的作用范围(提供主机之间的逻辑通信)TCP 和 UDP 协议的作用范围(提供进程之间的逻辑通信)因 特 网运输层的主要功能 n 运输层为应用进程之间提供端到端的逻辑通信(但网络层是为主机之间提供逻辑通信)。n 运输层还要对收到的报文进行差错检测。n 运输层需要有两种不同的运输协议,即面向连接的 TCP 和无连接的 UDP。运输层与其上下层之间的关系的 OSI 表示法 运输实体运输实体 运输协议 运输层层接口 运输服务用户(应用层实体)运输服务用户(应用层实体)层接口 网络层(或网际层)应用层主机 A 主机 B运输层服务访问点TSAP网络层服务访问点NSAP运输层向上提供可靠的和不可靠的逻

5、辑通信信道?应用层运输层发送进程接收进程接收进程数据 数据全双工可靠信道数据 数据使用 TCP 协议使用 UDP 协议不可靠信道 发送进程TCP/IP的运输层有两个不同的协议:(1)用户数据报协议 UDP(User Datagram Protocol)(2)传输控制协议 TCP(Transmission Control Protocol)运输层中的两个协议n 两个对等运输实体在通信时传送的数据单位叫作运输协议数据单元 TPDU(Transport Protocol Data Unit)。n TCP 传送的数据单位协议是 TCP 报文段(segment)n UDP 传送的数据单位协议是 UDP

6、报文或用户数据报。TCP 与 UDP TCP/IP 体系中的运输层协议 TCP UDPIP应用层与各种网络接口运输层TCP 与 UDP n UDP 在传送数据之前不需要先建立连接。对方的运输层在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 是一种最有效的工作方式。n TCP 则提供面向连接的服务。TCP 不提供广播或多播服务。由于 TCP 要提供可靠的、面向连接的运输服务,因此不可避免地增加了许多的开销。这不仅使协议数据单元的首部增大很多,还要占用许多的处理机资源。下表给出了一些应用和应用层协议主要使用的运输层协议(UDP或TCP)。端口的概念

7、n 为了使运行不同操作系统的计算机的应用进程能够互相通信,就必须用统一的方法对 TCP/IP 体系的应用进程进行标志。n 虽然通信的终点是应用进程,但我们可以把端口想象是通信的终点,因为我们只要把要传送的报文交到目的主机的某一个合适的目的端口,剩下的工作(即最后交付目的进程)就由 TCP 来完成。n 端口就是运输层服务访问点 TSAP。n 端口的作用就是让应用层的各种应用进程都能将其数据通过端口向下交付给运输层,以及让运输层知道应当将其报文段中的数据向上通过端口交付给应用层相应的进程。n 从这个意义上讲,端口是用来标志应用层的进程。端口在进程之间的通信中所起的作用 应用层运输层网络层TCP 报

8、文段UDP用户数据报应用进程TCP 复用 IP 复用UDP 复用 TCP 报文段UDP用户数据报 应用进程端口 端口TCP 分用 UDP 分用IP 分用发送方接收方软件端口与硬件端口n 在协议栈层间的抽象的协议端口是软件端口。n 路由器或交换机上的端口是硬件端口。n 硬件端口是不同硬件设备进行交互的接口,而软件端口是应用层的各种协议进程与运输实体进行层间交互的一种地址。端口 n 端口用一个 16 bit 端口号进行标志。n 端口号只具有本地意义,即端口号只是为了标志本计算机应用层中的各进程。在因特网中不同计算机的相同端口号是没有联系的。n 若没有端口,运输层就无法知道数据应当交付给应用层的哪一

9、个进程。端口是用来标识应用层的进程。三类端口 n 熟知端口,数值一般为 01023。n 例如,FTP用21,TELNET用23,SMTP用25,DNS用53,HTTP用80,SNMP用161,等等。n 当一种新的应用程序出现时,必须为它指派一个熟知端口,否则其他的应用进程就无法和它进行交互n 登记端口号,数值为102449151,为没有熟知端口号的应用程序使用的。使用这个范围的端口号必须在 IANA 登记,以防止重复。n 客户端口号或短暂端口号,数值为4915265535,留给客户进程选择暂时使用。当服务器进程收到客户进程的报文时,就知道了客户进程所使用的动态端口号。通信结束后,这个端口号可供

10、其他客户进程以后使用。插口(socket)n TCP 使用“连接”(而不仅仅是“端口”)作为最基本的抽象,同时将 TCP 连接的端点称为插口(socket),或套接字、套接口。n 插口和端口、IP 地址的关系是:IP 地址131.6.23.13 端口号1500 131.6.23.13,1500插口(socket)5.2 用户数据报协议 UDP 5.2.1 UDP 概述 n UDP 只在 IP 的数据报服务之上增加了很少一点的功能,即端口的功能和差错检测的功能。n 虽然 UDP 用户数据报只能提供不可靠的交付,但 UDP 在某些方面有其特殊的优点。UDP 的主要特点 n UDP 是无连接的,即发

11、送数据之前不需要建立连接。n UDP 使用尽最大努力交付,即不保证可靠交付,同时也不使用拥塞控制。n UDP 是面向报文的。UDP 没有拥塞控制,很适合多媒体通信的要求。n UDP 支持一对一、一对多、多对一和多对多的交互通信。n UDP 的首部开销小,只有 8 个字节。面向报文的 UDPn 发送方 UDP 对应用程序交下来的报文,在添加首部后就向下交付 IP 层。UDP 对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。n 应用层交给 UDP 多长的报文,UDP 就照样发送,即一次发送一个报文。n 接收方 UDP 对 IP 层交上来的 UDP 用户数据报,在去除首部后就原封不

12、动地交付上层的应用进程,一次交付一个完整的报文。n 应用程序必须选择合适大小的报文。UDP 是面向报文的 IP 数据报的数据部分IP 首部 IP 层UDP 首部 UDP 用户数据报的数据部分运输层应用层报文应用层 UDP 用户数据报的首部格式 伪首部 源端口 目的端口 长 度 检验和数 据 首 部UDP长度 源 IP 地址 目的 IP 地址 0 17IP 数据报字节4 4 1 1 212 2 2 2 2 字节发送在前数 据 首 部UDP 用户数据报UDP 基于端口的分用 IP 层UDP 数据报到达端口 2 端口 3 端口 1UDP 分用伪首部 源端口 目的端口 长 度 检验和数 据 首 部UD

13、P长度 源 IP 地址 目的 IP 地址 0 17IP 数据报字节4 4 1 1 212 2 2 2 2 字节发送在前数 据 首 部UDP 用户数据报用户数据报 UDP 有两个字段:数据字段和首部字段。首部字段有 8 个字节,由 4 个字段组成,每个字段都是两个字节。伪首部 源端口 目的端口 长 度 检验和数 据 首 部UDP长度 源 IP 地址 目的 IP 地址 0 17IP 数据报字节4 4 1 1 212 2 2 2 2 字节发送在前数 据 首 部UDP 用户数据报在计算检验和时,临时把“伪首部”和 UDP 用户数据报连接在一起。伪首部仅仅是为了计算检验和。计算 UDP 检验和的例子 1

14、0011001 00010011 153.1900001000 01101000 8.10410101011 00000011 171.300001110 00001011 14.1100000000 00010001 0 和 1700000000 00001111 1500000100 00111111 108700000000 00001101 1300000000 00001111 1500000000 00000000 0(检验和)01010100 01000101 数据01010011 01010100 数据01001001 01001110 数据01000111 00000000

15、数据和 0(填充)10010110 11101101 求和得出的结果01101001 00010010 检验和 12 字节伪首部8 字节UDP 首部7 字节数据填充按二进制反码运算求和将得出的结果求反码全 0 17 15 1087 13 15 全 0数据 数据 数据 数据数据 数据 数据 全 0请注意:进行反码运算求和时,最高位有进位 2,这个 2 应当加到最低位。5.3 传输控制协议 TCP 概述 5.3.1 TCP 最主要的特点 n TCP 是面向连接的运输层协议。n 每一条 TCP 连接只能有两个端点(endpoint),每一条 TCP 连接只能是点对点的(一对一)。n TCP 提供可靠

16、交付的服务。n TCP 提供全双工通信。n 面向字节流。7 6 8 HTCP 面向流的概念 发送 TCP 报文段发送方 接收方把字节写入发送缓存从接收缓存读取字节应用进程应用进程123018171615141920214 5131211H 10 9 H加上 TCP 首部构成 TCP 报文段TCP TCP字节流 字节流H表示 TCP 报文段的首部x表示序号为 x 的数据字节TCP 连接5.3.2 TCP 的连接 n TCP 把连接作为最基本的抽象。n 每一条 TCP 连接有两个端点。n TCP 连接的端点不是主机,不是主机的IP 地址,不是应用进程,也不是运输层的协议端口。TCP 连接的端点叫做

17、套接字(socket)或插口。n 端口号拼接到(contatenated with)IP 地址即构成了套接字。套接字(socket)套接字 socket=(IP地址:端口号)(5-1)n 每一条 TCP 连接唯一地被通信两端的两个端点(即两个套接字)所确定。即:TCP 连接:=socket1,socket2=(IP1:port1),(IP2:port2)(5-2)同一个名词 socket有多种不同的意思 n 应用编程接口 API 称为 socket API,简称为 socket。n socket API 中使用的一个函数名也叫作 socket。n 调用 socket 函数的端点称为 socke

18、t。n 调用 socket 函数时其返回值称为 socket 描述符,可简称为 socket。n 在操作系统内核中连网协议的 Berkeley 实现,称为 socket 实现。5.4 可靠传输的工作原理5.4.1 停止等待协议(a)无差错情况A发送 M1确认 M1B发送 M2发送 M3确认 M2确认 M3A发送 M1B超时重传 M1发送 M2确认 M1丢弃有差错的报文(b)超时重传t t t t请注意n 在发送完一个分组后,必须暂时保留已发送的分组的副本。n 分组和确认分组都必须进行编号。n 超时计时器的重传时间应当比数据在分组传输的平均往返时间更长一些。确认丢失和确认迟到 A发送 M1B超时

19、重传 M1发送 M2丢弃重复的 M1重传确认 M1(a)确认丢失确认 M1A发送 M1B超时重传 M1发送 M2丢弃重复的 M1重传确认M1(b)确认迟到确认 M1收下迟到的确认但什么也不做t t t t可靠通信的实现n 使用上述的确认和重传机制,我们就可以在不可靠的传输网络上实现可靠的通信。n 这种可靠传输协议常称为自动重传请求ARQ(Automatic Repeat reQuest)。n ARQ 表明重传的请求是自动进行的。接收方不需要请求发送方重传某个出错的分组。信道利用率 n 停止等待协议的优点是简单,但缺点是信道利用率太低。TDRTTATD+RTT+TAB分组确认tt分组确认信道的利

20、用率 U(5-3)流水线传输 n 发送方可连续发送多个分组,不必每发完一个分组就停顿下来等待对方的确认。n 由于信道上一直有数据不间断地传送,这种传输方式可获得很高的信道利用率。B分组ttAACK5.4.2 连续 ARQ 协议 1 2 3 4 5 6 7 8 9 10 11 12(a)发送方维持发送窗口(发送窗口是 5)发送窗口(b)收到一个确认后发送窗口向前滑动向前1 2 3 4 5 6 7 8 9 10 11 12发送窗口连续 ARQ 协议的工作原理 DATA0DATA1DATA2DATA3DATA4DATA5重传 DATA2重传 DATA3ACK1ACK2ACK1 确认 DATA0ACK

21、2 确认 DATA1DATA2 出错,丢弃DATA3 不按序,丢弃,重传 ACK2DATA4 不按序,丢弃,重传 ACK2DATA5 不按序,丢弃,重传 ACK2ACK3ACK3 确认 DATA2ACK4 确认 DATA3ACK4重传 DATA5重传 DATA4超时重传时间A Btout送交主机送交主机?ACK2ACK2ACK2累积确认 n 接收方一般采用累积确认的方式。即不必对收到的分组逐个发送确认,而是对按序到达的最后一个分组发送确认,这样就表示:到这个分组为止的所有分组都已正确收到了。n 累积确认有的优点是:容易实现,即使确认丢失也不必重传。缺点是:不能向发送方反映出接收方已经正确收到的

22、所有分组的信息。Go-back-N(回退 N)n 如果发送方发送了前 5 个分组,而中间的第 3 个分组丢失了。这时接收方只能对前两个分组发出确认。发送方无法知道后面三个分组的下落,而只好把后面的三个分组都再重传一次。n 这就叫做 Go-back-N(回退 N),表示需要再退回来重传已发送过的 N 个分组。n 可见当通信线路质量不好时,连续 ARQ 协议会带来负面的影响。选择确认 SACK(Selective ACK)n 接收方收到了和前面的字节流不连续的两个字节块。n 如果这些字节的序号都在接收窗口之内,那么接收方就先收下这些数据,但要把这些信息准确地告诉发送方,使发送方不要再重复发送这些已

23、收到的数据。1 1000 1501 3000 3501 4500确认号=1001 L1=1501 L2=3501 R1=3001 R1=4501接收到的字节流序号不连续 连续的字节流 第一个字节块 第二个字节块 和前后字节不连续的每一个字节块都有两个边界:左边界和右边界。图中用四个指针标记这些边界。第一个字节块的左边界 L1=1501,但右边界 R1=3001。左边界指出字节块的第一个字节的序号,但右边界减 1 才是 字节块中的最后一个序号。第二个字节块的左边界 L2=3501,而右边界 R2=4501。RFC 2018 的规定n 如果要使用选择确认,那么在建立 TCP 连接时,就要在 TCP

24、 首部的选项中加上“允许 SACK”的选项,而双方必须都事先商定好。n 如果使用选择确认,那么原来首部中的“确认号字段”的用法仍然不变。只是以后在 TCP 报文段的首部中都增加了 SACK 选项,以便报告收到的不连续的字节块的边界。n 由于首部选项的长度最多只有 40 字节,而指明一个边界就要用掉 4 字节,因此在选项中最多只能指明 4 个字节块的边界信息。TCP 可靠通信的具体实现 n TCP 连接的每一端都必须设有两个窗口一个发送窗口和一个接收窗口。n TCP 的可靠传输机制用字节的序号进行控制。TCP 所有的确认都是基于序号而不是基于报文段。n TCP 两端的四个窗口经常处于动态变化之中

25、。n TCP连接的往返时间 RTT 也不是固定不变的。需要使用特定的算法估算较为合理的重传时间。TCP首部20 字节的固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FIN32 bitSYNRSTPSHACKURG比特 0 8 16 24 31填 充TCP 数据部分 TCP 首部TCP 报文段IP 数据部分 IP 首部发送在前5.5 TCP 报文段的首部格式 TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG

26、比特 0 8 16 24 31填 充源端口和目的端口字段各占 2 字节。端口是运输层与应用层的服务接口。运输层的复用和分用功能都要通过端口才能实现。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充序号字段占 4 字节。TCP 连接中传送的数据流中的每一个字节都编上一个序号。序号字段的值则指的是本报文段所发送的数据的第一个字节的序号。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指

27、 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充确认号字段占 4 字节,是期望收到对方的下一个报文段的数据的第一个字节的序号。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充数据偏移占 4 bit,它指出 TCP 报文段的数据起始处距离 TCP 报文段的起始处有多远。“数据偏移”的单位不是字节而是 32 bit 字(4 字节为计算单位)。TCP首部20字节固定首部目 的 端 口数据偏移检

28、验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充保留字段占 6 bit,保留为今后使用,但目前应置为 0。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充紧急比特 URG 当 URG 1 时,表明紧急指针字段有效。它告诉系统此报文段中有紧急数据,应尽快传送(相当于高优先级的数据)。TCP首部20字节固定首部目 的 端 口数据偏移检 验

29、 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充确认比特 ACK 只有当 ACK 1 时确认号字段才有效。当 ACK 0 时,确认号无效。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充推送比特 PSH(PuSH)接收 TCP 收到推送比特置 1 的报文段,就尽快地交付给接收应用进程,而不再等到整个缓存都填满了后再向上交付。TCP首部2

30、0字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充复位比特 RST(ReSeT)当 RST 1 时,表明 TCP 连接中出现严重差错(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立运输连接。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充同步比特 SYN 同步比特 SYN 置为 1,就表

31、示这是一个连接请求或连接接受报文。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充终止比特 FIN(FINal)用来释放一个连接。当FIN 1 时,表明此报文段的发送端的数据已发送完毕,并要求释放运输连接。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充窗口字段 占 2 字节。窗口字

32、段用来控制对方发送的数据量,单位为字节。TCP 连接的一端根据设置的缓存空间大小确定自己的接收窗口大小,然后通知对方以确定对方的发送窗口的上限。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充检验和 占 2 字节。检验和字段检验的范围包括首部和数据这两部分。在计算检验和时,要在 TCP 报文段的前面加上 12 字节的伪首部。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗

33、口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充紧急指针字段 占 16 bit。紧急指针指出在本报文段中的紧急数据的最后一个字节的序号。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充选项字段 长度可变。TCP 只规定了一种选项,即最大报文段长度 MSS(Maximum Segment Size)。MSS 告诉对方 TCP:“我的缓存所能接收的报文段的数据字段的最大长度是 MSS 个字节。”MSS

34、 是 TCP 报文段中的数据字段的最大长度。数据字段加上 TCP 首部才等于整个的 TCP 报文段。TCP首部20字节固定首部目 的 端 口数据偏移检 验 和选 项(长 度 可 变)源 端 口序 号紧 急 指 针窗 口确 认 号保 留FINSYNRSTPSHACKURG比特 0 8 16 24 31填 充填充字段 这是为了使整个首部长度是 4 字节的整数倍。5.6 TCP 可靠传输的实现5.6.1 以字节为单位的滑动窗口前移不允许发送已发送并收到确认A 的发送窗口=20允许发送的序号26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

35、 45 46 47 48 49 50 51 52 53 54 55 56B 期望收到的序号前沿 后沿前移 收缩根据 B 给出的窗口值A 构造出自己的发送窗口 TCP 标准强烈不赞成发送窗口前沿向后收缩 不允许发送 已发送并收到确认A 的发送窗口位置不变允许发送但尚未发送26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55已发送但未收到确认56P1P2P3不允许接收 已发送确认并交付主机B 的接收窗口允许接收26 27 28 29 30 31 32 33 34 35 36

36、 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56未按序收到可用窗口A 发送了 11 个字节的数据 P3 P1=A 的发送窗口(又称为通知窗口)P2 P1=已发送但尚未收到确认的字节数P3 P2=允许发送但尚未发送的字节数(又称为可用窗口)允许发送但尚未发送A 的发送窗口向前滑动26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55已发送并收到确认不允许发送已发送但未收到确认56P1P2P3允许接收B

37、的接收窗口向前滑动26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55已发送确认并交付主机不允许接收56未按序收到A 收到新的确认号,发送窗口向前滑动 先存下,等待缺少的数据的到达不允许发送已发送并收到确认A 的发送窗口已满,有效窗口为零26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55已发送但未收到确认56P1P2P3A 的发送窗口内的序号都

38、已用完,但还没有再收到确认,必须停止发送。发送缓存 最后被确认的字节发送应用程序发送缓存最后发送的字节发送窗口已发送 已发送已发送TCP序号增大接收缓存接收应用程序已收到已收到接收窗口TCP接收缓存下一个读取的字节序号增大下一个期望收到的字节(确认号)发送缓存与接收缓存的作用n 发送缓存用来暂时存放:n 发送应用程序传送给发送方 TCP 准备发送的数据;n TCP 已发送出但尚未收到确认的数据。n 接收缓存用来暂时存放:n 按序到达的、但尚未被接收应用程序读取的数据;n 不按序到达的数据。需要强调三点n A 的发送窗口并不总是和 B 的接收窗口一样大(因为有一定的时间滞后)。n TCP 标准没

39、有规定对不按序到达的数据应如何处理。通常是先临时存放在接收窗口中,等到字节流中所缺少的字节收到后,再按序交付上层的应用进程。n TCP 要求接收方必须有累积确认的功能,这样可以减小传输开销。5.6.2 超时重传时间的选择n 重传机制是 TCP 中最重要和最复杂的问题之一。n TCP 每发送一个报文段,就对这个报文段设置一次计时器。只要计时器设置的重传时间到但还没有收到确认,就要重传这一报文段。往返时延的方差很大n 由于 TCP 的下层是一个互联网环境,IP 数据报所选择的路由变化很大。因而运输层的往返时间的方差也很大。时间数据链路层运输层T1T2T3往返时间的概率分布加权平均往返时间n TCP

40、 保留了 RTT 的一个加权平均往返时间 RTTS(这又称为平滑的往返时间)。n 第一次测量到 RTT 样本时,RTTS 值就取为所测量到的 RTT 样本值。以后每测量到一个新的 RTT 样本,就按下式重新计算一次 RTTS:新的 RTTS(1)(旧的 RTTS)(新的 RTT 样本)(5-4)n 式中,0 1。若 很接近于零,表示 RTT 值更新较慢。若选择 接近于 1,则表示 RTT 值更新较快。n RFC 2988 推荐的 值为 1/8,即 0.125。超时重传时间 RTO(RetransmissionTime-Out)n RTO 应略大于上面得出的加权平均往返时间 RTTS。n RFC

41、 2988 建议使用下式计算 RTO:n RTO RTTS+4 RTTD(5-5)n RTTD 是 RTT 的偏差的加权平均值。n RFC 2988 建议这样计算 RTTD。第一次测量时,RTTD 值取为测量到的 RTT 样本值的一半。在以后的测量中,则使用下式计算加权平均的 RTTD:新的 RTTD=(1)(旧的RTTD)+RTTS 新的 RTT 样本(5-6)n 是个小于 1 的系数,其推荐值是 1/4,即 0.25。往返时间 RTT?往返时间的测量相当复杂 n TCP 报文段 1 没有收到确认。重传(即报文段 2)后,收到了确认报文段 ACK。n 如何判定此确认报文段是对原来的报文段 1

42、 的确认,还是对重传的报文段 2 的确认?发送一个TCP 报文段超时重传TCP 报文段收到 ACK时间1 2往返时间 RTT?是对哪一个报文段的确认?Karn 算法 n 在计算平均往返时间 RTT 时,只要报文段重传了,就不采用其往返时间样本。n 这样得出的加权平均平均往返时间 RTTS 和超时重传时间 RTO 就较准确。n 报文段每重传一次,就把 RTO 增大一些:新的 RTO(旧的 RTO)n 系数 的典型值是 2。n 当不再发生报文段的重传时,才根据报文段的往返时延更新平均往返时延 RTT 和超时重传时间 RTO 的数值。n 实践证明,这种策略较为合理。修正的 Karn 算法 5.7 T

43、CP 的流量控制5.7.1 利用滑动窗口实现流量控制n 一般说来,我们总是希望数据传输得更快一些。但如果发送方把数据发送得过快,接收方就可能来不及接收,这就会造成数据的丢失。n 流量控制(flow control)就是让发送方的发送速率不要太快,既要让接收方来得及接收,也不要使网络发生拥塞。n 利用滑动窗口机制可以很方便地在 TCP 连接上实现流量控制。1.滑动窗口的概念n TCP 采用大小可变的滑动窗口进行流量控制。窗口大小的单位是字节。n 在 TCP 报文段首部的窗口字段写入的数值就是当前给对方设置的发送窗口数值的上限。n 发送窗口在连接建立时由双方商定。但在通信的过程中,接收端可根据自己

44、的资源情况,随时动态地调整对方的发送窗口上限值(可增大或减小)。收到确认即可前移100 200 300 400 500 600 700 800 900 101 201 301 401 501 601 701 801 1发送窗口可发送 不可发送指针n 发送端要发送 900 字节长的数据,划分为 9 个 100 字节长的报文段,而发送窗口确定为 500 字节。n 发送端只要收到了对方的确认,发送窗口就可前移。n 发送 TCP 要维护一个指针。每发送一个报文段,指针就向前移动一个报文段的距离。收到确认即可前移100 200 300 400 500 600 700 800 900 101 201 30

45、1 401 501 601 701 801 1可发送 不可发送指针100 200 300 400 500 600 700 800 900 101 201 301 401 501 601 701 801 1发送窗口可发送 不可发送指针 发送窗口前移n 发送端已发送了 400 字节的数据,但只收到对前 200 字节数据的确认,同时窗口大小不变。n 现在发送端还可发送 300 字节。已发送并被确认已发送但未被确认100 200 300 400 500 600 700 800 900 101 201 301 401 501 601 701 801 1已发送并被确认已发送但未被确认可发送 不可发送指针1

46、00 200 300 400 500 600 700 800 900 101 201 301 401 501 601 701 801 1已发送并被确认可发送不可发送指针发送窗口前移发送窗口缩小n 发送端收到了对方对前 400 字节数据的确认,但对方通知发送端必须把窗口减小到 400 字节。n 现在发送端最多还可发送 400 字节的数据。利用可变窗口大小进行流量控制双方确定的窗口值是 400 SEQ=1SEQ=201SEQ=401SEQ=301SEQ=101SEQ=501ACK=201,WIN=300ACK=601,WIN=0ACK=501,WIN=200主机 A 主机 B允许 A 再发送 30

47、0 字节(序号 201 至 500)A 还能发送 200 字节A 还能发送 200 字节(序号 301 至 500)A 还能发送 300 字节A 还能发送 100 字节(序号 401 至 500)A 超时重发,但不能发送序号 500 以后的数据允许 A 再发送 200 字节(序号 501 至 700)A 还能发送 100 字节(序号 501 至 700)不允许 A 再发送(到序号 600 的数据都已收到)SEQ=201丢失!5.8 TCP 的拥塞控制5.8.1 拥塞控制的一般原理 n 在某段时间,若对网络中某资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏产生拥塞(congesti

48、on)。n 出现资源拥塞的条件:对资源需求的总和 可用资源(5-7)n 若网络中有许多资源同时产生拥塞,网络的性能就要明显变坏,整个网络的吞吐量将随输入负荷的增大而下降。拥塞控制与流量控制的关系 n 拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。n 拥塞控制是一个全局性的过程,涉及到所有的主机、所有的路由器,以及与降低网络传输性能有关的所有因素。n 流量控制往往指在给定的发送端和接收端之间的点对点通信量的控制。n 流量控制所要做的就是抑制发送端发送数据的速率,以便使接收端来得及接收。拥塞控制所起的作用 提供的负载吞吐量理想的拥塞控制实际的拥塞控制0死锁(吞吐量=0)无拥塞控制拥

49、塞轻度拥塞拥塞控制的一般原理 n 拥塞控制是很难设计的,因为它是一个动态的(而不是静态的)问题。n 当前网络正朝着高速化的方向发展,这很容易出现缓存不够大而造成分组的丢失。但分组的丢失是网络发生拥塞的征兆而不是原因。n 在许多情况下,甚至正是拥塞控制本身成为引起网络性能恶化甚至发生死锁的原因。这点应特别引起重视。开环控制和闭环控制 n 开环控制方法就是在设计网络时事先将有关发生拥塞的因素考虑周到,力求网络在工作时不产生拥塞。n 闭环控制是基于反馈环路的概念。属于闭环控制的有以下几种措施:n 监测网络系统以便检测到拥塞在何时、何处发生。n 将拥塞发生的信息传送到可采取行动的地方。n 调整网络系统

50、的运行以解决出现的问题。n 发送端的主机在确定发送报文段的速率时,既要根据接收端的接收能力,又要从全局考虑不要使网络发生拥塞。n 因此,每一个 TCP 连接需要有以下两个状态变量:n 接收端窗口 rwnd(receiver window)又称为通知窗口(advertised window)。n 拥塞窗口 cwnd(congestion window)。5.8.2 几种拥塞控制方法1.慢开始和拥塞避免接收端窗口 rwnd 和拥塞窗口 cwnd n(1)接收端窗口 rwnd 这是接收端根据其目前的接收缓存大小所许诺的最新的窗口值,是来自接收端的流量控制。接收端将此窗口值放在 TCP 报文的首部中的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁