《斯坦福大学机器学习课程讲义第三讲-线性代数基础.pptx》由会员分享,可在线阅读,更多相关《斯坦福大学机器学习课程讲义第三讲-线性代数基础.pptx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Andrew NgLinear Algebra review(optional)Matrices and vectorsMachine LearningAndrew NgDimension of matrix:number of rows x number of columnsMatrix:Rectangular array of numbers:Andrew NgMatrix Elements(entries of matrix)“,entry”in the row,column.Andrew NgVector:An n x 1 matrix.n-dimensional vector1-in
2、dexed vs 0-indexed:elementAndrew NgAndrew NgLinear Algebra review(optional)Addition and scalar multiplicationMachine LearningAndrew NgMatrix AdditionAndrew NgScalar MultiplicationAndrew NgCombination of OperandsAndrew NgAndrew NgLinear Algebra review(optional)Matrix-vector multiplicationMachine Lear
3、ningAndrew NgExampleAndrew NgDetails:m x n matrix(m rows,n columns)n x 1 matrix(n-dimensionalvector)m-dimensional vectorTo get ,multiply s row with elements of vector ,and add them up.Andrew NgExampleAndrew NgHouse sizes:Andrew NgAndrew NgLinear Algebra review(optional)Matrix-matrix multiplicationMa
4、chine LearningAndrew NgExampleAndrew NgDetails:m x n matrix(m rows,n columns)n x o matrix(n rows,o columns)m x omatrixThe column of the matrix is obtained by multiplying with the column of .(for =1,2,o)Andrew NgExampleAndrew NgHouse sizes:MatrixMatrixHave 3 competing hypotheses:1.2.3.Andrew NgAndrew
5、 NgLinear Algebra review(optional)Matrix multiplication propertiesMachine LearningAndrew NgLet and be matrices.Then in general,(not commutative.)E.g.Andrew NgLetLetComputeComputeAndrew NgIdentity MatrixFor any matrix ,Denoted (or ).Examples of identity matrices:2 x 23 x 34 x 4Andrew NgAndrew NgLinea
6、r Algebra review(optional)Inverse and transposeMachine LearningAndrew NgNot all numbers have an inverse.Matrix inverse:If A is an m x m matrix,and if it has an inverse,Matrices that dont have an inverse are“singular”or“degenerate”Andrew NgMatrix TransposeExample:Let be an m x n matrix,and let Then is an n x m matrix,and