《2023年人教版七年级数学课本知识点归纳总结全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年人教版七年级数学课本知识点归纳总结全面汇总归纳.pdf(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版七年级数学课本知识点归纳 第一章 有理数(一)正负数 1.正数:大于 0 的数。2.负数:小于 0 的数。3.0 即不就是正数也不就是负数。4.正数大于 0,负数小于 0,正数大于负数。(二)有理数 1.有理数:由整数与分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数就是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字就是无限不循环的。如:)2.整数:正整数、0、负整数,统称整数。3.分数:正分数、负分数。(三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数 0,这个零点叫做原点,规定直线上从
2、原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2.数轴的三要素:原点、正方向、单位长度。3.相反数:只有符号不同的两个数叫做互为相反数。0 的相反数还就是 0。人教版七年级数学课本知识点归纳 4.绝对值:正数的绝对值就是它本身,负数的绝对值就是它的相反数;0 的绝对值就是 0,两个负数,绝对值大的反而小。(四)有理数的加减法 1.先定符号,再算绝对值。2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得 0。一个数同 0 相加减,仍得这个数。3.加法交换律:a+b=b+a 两
3、个数相加,交换加数的位置,与不变。4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,与不变。5.a b=a+(b)减去一个数,等于加这个数的相反数。(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。任何数同 0 相乘,都得 0。2.乘积就是 1 的两个数互为倒数。3.乘法交换律:ab=b a 4.乘法结合律:(ab)c=a(b c)5.乘法分配律:a(b+c)=a b+ac(六)有理数除法 人教版七年级数学课本知识点归纳 1.先将除法化成乘法,然后定符号,最后求结果。2.除以一个不等于 0 的数,等于乘这个数的
4、倒数。3.两数相除,同号得正,异号得负,并把绝对值相除,0 除以任何一个不等于0 的数,都得 0。(七)乘方 1.求 n 个相同因数的积的运算,叫做乘方。写作 an。(乘方的结果叫幂,a 叫底数,n 叫指数)2.负数的奇数次幂就是负数,负数的偶次幂就是正数;0 的任何正整数次幂都就是 0。3.同底数幂相乘,底不变,指数相加。4.同底数幂相除,底不变,指数相减。(八)有理数的加减乘除混合运算法则 1.先乘方,再乘除,最后加减。2.同级运算,从左到右进行。3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。(九)科学记数法、近似数、有效数字。第二章 整式(一)整式 人教版七年级数学课
5、本知识点归纳 1.整式:单项式与多项式的统称叫整式。2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也就是单项式。3.系数;一个单项式中,数字因数叫做这个单项式的系数。4、次数:一个单项式中,所有字母的指数与叫做这个单项式的次数。5.多项式:几个单项式的与叫做多项式。6.项:组成多项式的每个单项式叫做多项式的项。7.常数项:不含字母的项叫做常数项。8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。(二)整式加减 整式加
6、减运算时,如果遇到括号先去括号,再合并同类项。1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数就是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数就是负数,去括号后原括号内各项的符号与原来的符号人教版七年级数学课本知识点归纳 相反。2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数就是合并前各同类项的系数的与,且字母部分不变 第三章 一元一次方程 分析实际问题中的数量关系,利用其中的相等关系列出方程,就是用数学解决实际问题的一种方法。(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知
7、数的等式叫方程。(二)一元一次方程。1.一元一次方程:方程里只含有一个未知数(元),未知数的次数都就是 1,这样的方程叫做一元一次方程。2.解:求出的方程中未知数的值叫做方程的解。(二)等式的性质 1.等式两边加(或减)同一个数(或式子),结果仍相等。如果 a=b,那么 a c=b c 2.等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等。如果 a=b,那么 a c=b c;人教版七年级数学课本知识点归纳 如果 a=b,(c 0),那么 a c=b c。(三)解方程的步骤 解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。1.去分母:把系数化成整数。2.去括号
8、 3.移项:把等式一边的某项变号后移到另一边。4.合并同类项 5.系数化为 1 第四章 图形认识初步 一、图形认识初步 1.几何图形:把从实物中抽象出来的各种图形的统称。2.平面图形:有些几何图形的各部分都在同一平面内,这样的图形就是平面图形。3.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形就是立体图形。4.展开图:有些立体图形就是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。人教版七年级数学课本知识点归纳 5.点,线,面,体 图形就是由点,线,面构成的。线与线相交得点,面与面相交得线。点动成线,线动成面,面动成体。二、直
9、线、线段、射线 1.线段:线段有两个端点。2.射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。3.直线:将线段的两端无限延长就形成了直线。直线没有端点。4.两点确定一条直线:经过两点有一条直线,并且只有一条直线。5.相交:两条直线有一个公共点时,称这两条直线相交。6.两条直线相交有一个公共点,这个公共点叫交点。7.中点:M 点把线段 AB 分成相等的两条线段 AM 与 MB,点 M 叫做线段 AB 的中点。8.线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)9.距离:连接两点间的线段的长度,叫做这两点的距离。三、角 1.角:有公共端点的两条射线组成的图形叫做角。人教
10、版七年级数学课本知识点归纳 2.角的度量单位:度、分、秒。3.角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点就是这个角的顶点。一度的 1/60 就是一分,一分的 1/60 就是一秒。角的度、分、秒就是 60 进制。4.角的比较:角也可以瞧成就是由一条射线绕着她的端点旋转而成的。平角与周角:一条射线绕着她的端点旋转,当终边与始边成一条直线时,所成的角叫做平角。始边继续旋转,当她又与始边重合时,所成的角叫做周角。平角等于 180 度。周角等于 360 度。直角等于 90 度。平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。工具:量角器
11、、三角尺、经纬仪。5.余角与补角 余角:两个角的与等于 90 度,这两个角互为余角。即其中每一个就是另一个角的余角。补角:两个角的与等于 180 度,这两个角互为补角。即其中一个就是另一个角的补角。人教版七年级数学课本知识点归纳 补角的性质:等角的补角相等 余角的性质:等角的余角相等人教版七年级数学课本知识点归纳 第五章 相交线与平行线 一、知识网络结构 二、知识要点 1、在同一平面内,两条直线的位置关系有 两 种:相交 与 平行,垂直 就是相交的一种特殊情况。2、在同一平面内,不相交的两条直线叫 平行线。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直
12、线平行。3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角就是 邻补角。邻补角的性质:邻补角互补。如图 1 所示,与 互平移命题、定理的两直线平行:平行于同一条直线性质角互补:两直线平行,同旁内性质相等:两直线平行,内错角性质相等:两直线平行,同位角性质平行线的性质的两直线平行:平行于同一条直线判定直线平行:同旁内角互补,两判定线平行:内错角相等,两直判定线平行:同位角相等,两直判定定义平行线的判定平行线,不相交的两条直线叫平行线:在同一平面内平行线及其判定内角同位角、内错角、同旁垂线相交线相交线相交线与平行线 4321 4321_:图 1 1 3 4 2 人教版七年级
13、数学课本知识点归纳 为邻补角,与 互为邻补角。+=180 ;+=180 ;+=180 ;+=180。4、两条直线相交所构成的四个角中,一个角的两边分别就是另一个角的两边的 反向延长线,这样的两个角互为 对顶角。对顶角的性质:对顶角相等。如图 1 所示,与 互为对顶角。=;=。5、两条直线相交所成的角中,如果有一个就是 直角或 90 时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图 2 所示,当 =90 时,。垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直。性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。性质 3:如图 2 所示,当 a b 时,=90。点到直线
14、的距离:直线外一点到这条直线的垂线段的长度叫点到直线图 2 1 3 4 2 a b 人教版七年级数学课本知识点归纳 的距离。6、同位角、内错角、同旁内角基本特征:在两条直线(被截线)的 同一方,都在第三条直线(截线)的 同一侧,这样 的两个角叫 同位角。图 3 中,共有 对同位角:与 就是同位角;与 就是同位角;与 就是同位角;与 就是同位角。在两条直线(被截线)之间,并且在第三条直线(截线)的 两侧,这样的两个角叫 内错角。图 3 中,共有 对内错角:与 就是内错角;与 就是内错角。在两条直线(被截线)的 之间,都在第三条直线(截线)的 同一旁,这样的两个角叫 同旁内角。图 3 中,共有 对
15、同旁内角:与 就是同旁内角;与 就是同旁内角。7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质:图 3 a 5 7 8 6 1 3 4 2 b c 图 4 a 5 7 8 6 1 3 4 2 b c 人教版七年级数学课本知识点归纳 性质 1:两直线平行,同位角相等。如图 4 所示,如果 a b,则 =;=;=;=。性质 2:两直线平行,内错角相等。如图 4 所示,如果 a b,则 =;=。性质 3:两直线平行,同旁内角互补。如图 4 所示,如果 a b,则 +=180 ;+=180。性质 4:平行
16、于同一条直线的两条直线互相平行。如果 a b,a c,则 。8、平行线的判定:判定 1:同位角相等,两直线平行。如图 5 所示,如果 =或 =或 =或 =,则 a b。判定 2:内错角相等,两直线平行。如图 5 所示,如果 =或 =,则 a b。判定 3:同旁内角互补,两直线平行。如图 5 所示,如果 +=180 ;+=180 ,则 a b。判定 4:平行于同一条直线的两条直线互相平行。如果 a b,a c,则 图 5 a 5 7 8 6 1 3 4 2 b c 人教版七年级数学课本知识点归纳 。9、判断一件事情的语句叫命题。命题由 题设 与 结论 两部分组成,有 真命题 与 假命题 之分。如
17、果题设成立,那么结论 一定 成立,这样的命题叫 真命题;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性就是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。平移后,新图形与原图形的 形状 与 大小 完全相同。平移后得到的新图形中每一点,都就是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。平移性质:平移前后两个图形中对应点的连线平行且相等;对应线段相等;对应角相等。第六章 实数 【知识点一】实数的分类 1、按定义分类:2、按性质符号分类:注:0 既不就是
18、正数也不就是负数、【知识点二】实数的相关概念 1、相反数 人教版七年级数学课本知识点归纳(1)代数意义:只有符号不同的两个数,我们说其中一个就是另一个的相反数.0 的相反数就是 0、(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称、(3)互为相反数的两个数之与等于 0、a、b 互为相反数 a+b=0、2、绝对值|a|0.3、倒数(1)0 没有倒数 (2)乘积就是 1 的两个数互为倒数.a、b 互为倒数、4、平方根(1)如果一个数的平方等于 a,这个数就叫做 a 的平方根.一个正数有两个平方根,它们互为相反数;0
19、 有一个平方根,它就是0 本身;负数没有平方根.a(a 0)的平方根记作.(2)一个正数a 的正的平方根,叫做a 的算术平方根.a(a 0)的算术平方根记作.5、立方根 如果 x3=a,那么 x 叫做 a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根就是零.【知识点三】实数与数轴 数轴定义:规定了原点,正方向与单位长度的直线叫做数轴,数轴的三要素缺一不可.人教版七年级数学课本知识点归纳【知识点四】实数大小的比较 1、对于数轴上的任意两个点,靠右边的点所表示的数较大、2、正数都大于 0,负数都小于 0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小、3、
20、无理数的比较大小:【知识点五】实数的运算 1、加法 同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0;一个数同 0 相加,仍得这个数.2、减法:减去一个数等于加上这个数的相反数.3、乘法 几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为 0,积就为 0.4、除法 除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0 除以任何一个不等于 0 的数都得 0.5、乘方与开方 (1)
21、an 所表示的意义就是 n 个 a 相乘,正数的任何次幂就是正数,人教版七年级数学课本知识点归纳 负数的偶次幂就是正数,负数的奇次幂就是负数.(2)正数与 0 可以开平方,负数不能开平方;正数、负数与 0 都可以开立方.(3)零指数与负指数【知识点六】有效数字与科学记数法 1、有效数字:一个近似数,从左边第一个不就是 0 的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2、科学记数法:把一个数用(1 10,n 为整数)的形式记数的方法叫科学记数法.第七章 平面直角坐标系 一、知识网络结构 用坐标表示平移用坐标表示地理位置坐标方法的简单应用平面直角坐标系有序数对平面直角坐标
22、系 二、知识要点 1、有序数对:有顺序的两个数 a 与 b 组成的数对叫做有序数对,记做(a,b)。2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。人教版七年级数学课本知识点归纳 3、横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。4、坐标:对于平面内任一点 P,过 P 分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数 a,b 分别叫点 P 的横坐标与纵坐标,记作 P(a,b)。5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的
23、点不在任何一个象限内。6、各象限点的坐标特点第一象限的点:横坐标 0,纵坐标 0;第二象限的点:横坐标 0,纵坐标 0;第三象限的点:横坐标 0,纵坐标 0;第四象限的点:横坐标 0,纵坐标 0。7、坐标轴上点的坐标特点x轴正半轴上的点:横坐标 0,纵坐标 0;x轴负半轴上的点:横坐标 0,纵坐标 0;y轴正半轴上的点:横坐标 0,纵坐标 0;y轴负半轴上的点:横坐 标 0,纵坐标 0;坐标原点:横坐标 0,纵坐标 0。(填“”、“”或“=”)8、点 P(a,b)到x轴的距离就是|b|,到y轴的距离就是|a|。9、对称点的坐标特点关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;关于y轴
24、对称的两个点,纵坐标相等,横坐标互为相反数;关于原点对称的两个点,横坐标、纵坐标分别互为相反数。人教版七年级数学课本知识点归纳 10、点 P(2,3)到x轴的距离就是 ;到y轴的距离就是 ;点P(2,3)关于x轴对称的点坐标为(,);点P(2,3)关于y轴对称的点坐标为(,)。11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与x轴垂直;如果两点的 纵坐标相同,则过这两点的直线与x轴平行、与y轴垂直。如果点 P(2,3)、Q(2,6),这两点横坐标相同,则 PQ y轴,PQ x轴;如果点 P(-1,2)、Q(4,2),这两点纵坐标相同,则 PQ x轴,PQ y轴。12、平行于x轴的
25、直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点 P(a,b)在一、三象限角平分线上,则 P 点的横坐标与纵坐标相同,即 a=b;如果点P(a,b)在二、四象限角平分线上,则 P 点的横坐标与纵坐标互为相反数,即 a=b。13、表示一个点(或物体)的位置的方法:一就是准确恰当地建立平面直角坐标系;二就是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。14、图形的平移可以转化为点的平移。坐标平移规律:左右平移时,横坐
26、标进行加减,纵坐标不变;上下平移时,横坐标不变,纵坐标进行人教版七年级数学课本知识点归纳 加减;坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点 P(2,3)向左平移 2 个单位后得到的点的坐标为(,);将点P(2,3)向右平移2 个单位后得到的点的坐标为(,);将点P(2,3)向上平移 2 个单位后得到的点的坐标为(,);将点 P(2,3)向下平移 2 个单位后得到的点的坐标为(,);将点 P(2,3)先向左平移 3 个单位后再向上平移 5 个单位后得到的点的坐标为(,);将点P(2,3)先向左平移3 个单位后再向下平移5 个单位后得到的点的坐标为(,);将点 P(2,3)先向右平
27、移 3 个单位后再向上平移 5个单位后得到的点的坐标为(,);将点 P(2,3)先向右平移 3 个单位后再向下平移 5 个单位后得到的点的坐标为(,)。第八章 二元一次方程组 一、知识网络结构 二、知识要点 1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。2、方程含有两个未知数,并且含有未知数的项的次数都就是 1,这样的方程叫二元一次方程,二元一次方程的一般形式为cbyax(cba、为三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组人教版七年级数学课本知识点归纳 常数,并且00
28、ba,)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。3、方程组含有两个未知数,并且含有未知数的项的次数都就是 1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。4、用代入法解二元一次方程组的一般步骤:观察方程组中,就是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未
29、知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。6、解三元一次方程组的一般步骤:观察方程组中未知数的系数特点,确定先消去哪个未知数;利用代入法或加减法,把方程组中的一个方人教版七年级数学课本知识点归纳 程,与
30、另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;解这个二元一次方程组,求得两个未知数的值;将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。第九章 不等式与不等式组 一、知识网络结构 二、知识要点 1、用不等号 表 示不等关系的 式 子叫不等式,不 等 号主要包括:、。2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数
31、都就是 1,这样的不等式叫一元一次不等式。3、不等式的性质:性质 1:不等式的两边同时加上(或减去)同一个数(或式子),不等与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321人教版七年级数学课本知识点归纳 号的方向 不变。用字母表示为:如果ba,那么cbca;如果ba,那么cbca;如果ba,那么cbca;如果ba,那么cbca。性质 2:不等式的两边同时乘以(或除以)同一个 正数,不等号的方向 不变。用字母表示为:如果0,cba,那么bcac(或cbca);如果0,
32、cba,那么bcac(或cbca);如果0,cba,那么bcac(或cbca);如果0,cba,那么bcac(或cbca);性质 3:不等式的两边同时乘以(或除以)同一个 负数,不等号的方向 改变。用字母表示为:如果0,cba,那么bcac(或cbca);如果0,cba,那么bcac(或cbca);如果0,cba,那么bcac(或cbca);如果0,cba,那么bcac(或cbca);4、解一元一次不等式的一般步骤:去分母;去括号;移项;合并同类项;系数化为 1。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。5、不等式组中含有一个未知数,并且所含未知数的项的次数都就
33、是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式人教版七年级数学课本知识点归纳 都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。6、解一元一次不等式组的一般步骤:求出这个不等式组中各个不等式的解集;利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解(此时也称这个不等式组的解集为空集)。7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小
34、小无处找。第十章 数据的收集、整理与描述 一、知识要点 1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。2、数据收集过程中,调查的方法通常有两种:全面调查与抽样调查。3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体人教版七年级数学课本知识点归纳 的数目叫这个样本的容量。5、画频数直方图的步骤:计算数差(最大值与最小值的差);确定组距与组数;列频数分布表;画频数直方图。