《分子生物学简答题整理.pdf》由会员分享,可在线阅读,更多相关《分子生物学简答题整理.pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 1 阐述操纵子(阐述操纵子(operonoperon)学说:)学说:A、乳糖操纵子的组成:大肠杆菌乳糖操纵子含 Z、Y、A 三个结构基因,分别编码半乳糖苷酶、半乳糖苷透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列 O,一个启动子 P 和一个调节基因B1 Z,Y,A 基因的产物由同一条多顺反子的 mRNA 分子所编码2 该 mRNA 分子的启动区位于阻遏基因和操纵基因之间,不能单独起始半乳糖苷酶和透过酶基因的高效表达3 操纵区是 DNA 上的一小段序列,是阻遏物的结合位点4 遏物与操纵区结合时 lacmRNA 的转录起始受到抑制5 诱导物与阻遏物结合,改变它的三维构象,使之不能与操纵子区相结
2、合,从而激发 lacmRNA 的合成。就是说诱导物存在时,操纵区没有被阻遏物占据,所以启动子能够顺利起始 mRNA 的转录2 2、乳糖操纵子的作用机制?、乳糖操纵子的作用机制?/简述乳糖操纵子的结构及其正、负调控机制简述乳糖操纵子的结构及其正、负调控机制答:A、乳糖操纵子的组成:大肠杆菌乳糖操纵子含 Z、Y、A 三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列 O,一个启动子 P 和一个调节基因 I。B、阻遏蛋白的负性调节:没有乳糖存在时,I 基因编码的阻遏蛋白结合于操纵序列 O 处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物
3、诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。所以,乳糖操纵子的这种调控机制为可诱导的负调控。C、CAP 的正性调节:在启动子上游有 CAP 结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP 浓度升高,与 CAP 结合,使 CAP 发生变构,CAP 结合于乳糖操纵子启动序列附近的 CAP 结合位点,激活 RNA 聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。D、协调调节:乳糖操纵子中的 I 基因编码的阻遏蛋白的负调控与 CAP 的正调控两种机制,互相协调、
4、互相制约。3 3、基因调控的水平有哪些?基因调控的意义?、基因调控的水平有哪些?基因调控的意义?答:a、DNA 水平的调控。b、转录水平上的调控。c、转录后的调控。d、翻译水平的调控。e、细胞质与基因调控。意义:适应物理,化学等环境因素变化,调节代谢,维持细胞生长与分裂。4 4、简述乳糖操纵子的结构及其正负调控机制。、简述乳糖操纵子的结构及其正负调控机制。答:结构:A、Y 和 Z,以及启动子、控制子和阻遏子。正调控机制:CAP 分解代谢产物激活蛋白质,直接作用于操纵子区上与 cAMP 结合形成 CAP-cAMP 复合物,转录进行。负调控机制:a、无诱导物时结构基因不转录。b、有诱导物时与阻遏基
5、因相结合,形成无活性阻遏物,RNA 聚合酶可与启动子区相结合,起始基因转录。5 5、基因调控的水平有哪些?基因调控的意义?、基因调控的水平有哪些?基因调控的意义?答:a、DNA 水平的调控。b、转录水平上的调控。c、转录后的调控。d、翻译水平的调控。e、细胞质与基因调控。意义:适应物理,化学等环境因素变化,调节代谢,维持细胞生长与分裂。6 6、简述乳糖操纵子的结构及其正负调控机制。、简述乳糖操纵子的结构及其正负调控机制。答:结构:A、Y 和 Z,以及启动子、控制子和阻遏子。正调控机制:CAP 分解代谢产物激活蛋白质,直接作用于操纵子区上与 cAMP 结合形成 CAP-cAMP 复合物,转录进行
6、。负调控机制:a、无诱导物时结构基因不转录。b、有诱导物时与阻遏基因相结合,形成无活性阻遏物,RNA 聚合酶可与启动子区相结合,起始基因转录。7 7、简述操纵子学说。、简述操纵子学说。答:是关于原核生物基因结构及其表达调控的学说,以乳糖操纵子为例,其主要内容为:a、Z、Y、A 基因的产物由同一条多顺反子的 mRNA 分子所编码。b、该 mRNA 分子的启动区位于阻遏基因与操纵区之间,不能单独起始半乳糖苷酶和透过酶基因的高效建立。c、操纵区是 DNA 上的一小段序列,是阻遏物的结合位点。d、当阻遏物与操纵区相结合时,lacmRNA 的转录起始受到抑制。e、诱导物通过与阻遏物结合,改变它的三维构象
7、,使之不能与操纵区相结合,从而激发lacmRNA 的合成。即有诱导物存在时,操纵区没有被阻遏物占据,所以启动子能够顺利起始 mRNA 转录。8 8 简述简述 TrpTrp操纵子的结构及其调控机制。操纵子的结构及其调控机制。答:Trp 操纵子由 5 个结构基因 TrpE、TrpD、TrpC、TrpB、TrpA 组成一个多顺因子的基因簇,在 5端是启动子、操纵子、前导顺序和弱化子区域。机制:a、辅阻蛋白参与的负调控阻遏调节。/、trp 诱导物含量高,与游离的辅阻遏蛋白相结合,形成有活性阻遏物,与操纵子区DNA 紧密结合,进行转录。/、trp 诱导物含量低,不能与辅阻遏物结合,辅阻遏物从 O 区上解
8、离,trp 操纵子阻遏转录进行。b、弱化作用。/、trp 浓度高时,2-3 不配对,3、4 区自由配对形成茎环状终止结构,转录停止。/、trp 浓度低时,2,3 配对,4 区片段无配对,结构基因转录。9 9 细菌的细菌的 trptrp 操纵子为什么除需要阻遏体系外还需要弱化系统。操纵子为什么除需要阻遏体系外还需要弱化系统。答:细菌的 trp 操纵子通过弱化作用弥补阻遏作用的不足,因为阻遏作用只能使转录不起始,而对于已经起始的转录,只能通过弱化作用使之中途停顿下来,阻遏作用的信号是细胞内 trp 的多少,弱化作用的信号是细胞内载有 trp 的 tRNA 的多少,两种作用相辅相成,体现周密的调控作
9、用。1010、简述原核生物转录后调控的机制。、简述原核生物转录后调控的机制。答:a、mRNA 自身结构元件对翻译起始的调节。b、mRNA 稳定性对转录水平的影响。c、调节蛋白的调控作用。d、反义 RNA 的调节作用。e、稀有密码子对翻译的影响。f、重叠基因对翻译的影响。g、翻译的阻遏。h、魔斑核苷酸水平对翻译的影响。1111、简要概括真核生物基因表达调控的、简要概括真核生物基因表达调控的 7 7 个层次个层次答:a、转录水平的调控,包括基因的开与关和转录效率的高与低。b、DNA 水平上的表达调控,包括基因丢失、扩增、交换、重排、DNA 甲基化。c、转录水平的调控,顺式作用元件与特异转录因子结合
10、影响转录,反式作用因子能识别结合于顺式作用元件上,参与调控。d、反式作用因子的 DNA 识别域或结合域。e、蛋白质修饰、磷酸化和去磷酸化。f、转录后水平的调控。g、翻译水平的调控 mRNA 的“扫描模式”与蛋白质合成起始 mRNA5端帽子结构及 polyA 尾巴,mRNA 稳定性与基因表达调控,蛋白质的修饰。1212、真核基因表达调控与原核生物有什么异同点。、真核基因表达调控与原核生物有什么异同点。答:同:a、都有转录水平上调控和转录水平后调控,并且都以转录水平上的调控为重要。b、在结构基因的上下游都存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否,调控基因的转录。异:a、
11、真核基因表达调控环节多,位点多,区域大,位置多样化。b、真核基因的转录与染色质的结构变化相关。c、无操纵子和衰减子。d、受环境影响小。e、以正性调控为主。f、调控的基因组很大,而原核基因组小。1313、简述、简述 DNADNA 水平对真核基因表达的调控。水平对真核基因表达的调控。答:DNA 水平的调控是真核生物发育调控的一种形式,包括基因丢失,扩增,重排和移位等方式,通过这些方式可以消除或变换某些基因并改变它们的活性。主要有:a、染色质状态对基因表达调控。b、修饰作用(乙酰化甲基化)与染色质状态的关系。c、基因丢失,扩增,重排,交换。1414、真核基因顺式作用元件及各自的特点。、真核基因顺式作
12、用元件及各自的特点。答:a、启动子,位于转录起始点附近且为转录起始所必需的 DNA 序列。/、核心启动子,指保证 RNA 聚合酶 2 转录正常起始所必需的,最少的 DNA 序列,包括转录起始位点及位点上游-30-负 25bp 处的 TATA区。/、上游启动子元件,包括通常位于-70bp 附近的 CAAT 区和 GC 区等能通过 TF2D 复合物调节转录起始的频率,提高转录效率。b、增强子,指能使与之连锁的基因转录频率明显增加的 DNA 序列,位于离转录起始点较远位置上,具有参与激活和增强起始功能的序列元件。c、绝缘子,负调控作用元件(与增强子作用相反)。1515、反式作用因子的、反式作用因子的
13、 DNADNA 结合域有哪几种?各自的结构特点?结合域有哪几种?各自的结构特点?答:a、螺旋-转折-螺旋结构(HTH)。这类蛋白质分子中有至少两个螺旋,中间由短侧连氨基酸残基形成“转折”,近羧基端的螺旋中 AA 残基的替换会影响该蛋白在 DNA 双螺旋大沟中的结合。b、锌指结构。由小组保守的 AA 和锌离子结合,在蛋白中形成了相对独立的功能域,像一根根收支伸向 DNA 大沟。c、碱性-亮氨酸拉链。C/EBP 家族蛋白的羧基端 35 个 AA 残基具有能形成螺旋的特点,其中每隔 6 个 AA 就有一个亮 AA 拉链,导致第七个亮 AA 残基都在螺旋的同一方向出现,这类蛋白都以 2 聚体形式与 D
14、NA 结合,两个蛋白螺旋上的亮 AA-侧基形成拉链型 2 聚体的基础。d、碱性-螺旋-环-螺旋,(BHLH 结构)。羧基端 100-200 个 AA 残基可形成两个双性螺旋,被非螺旋的环状结构所隔开,蛋白质的氨基端则是碱性区,其 DNA 结合特性与亮 AA 拉链类蛋白相似。e、同源域蛋白。同源域是指编码 60 个保守氨基酸序列的DNA 片段,广泛存在真核生物基因组内,该遗传位点的基因产物决定了躯体发育。1616、真核基因转录调控的主要模式、真核基因转录调控的主要模式答:启动子、转录模板、RNA 聚合酶 2、RNA 聚合酶 2 基础转录所需的蛋白质因子、增强子及绝缘子对转录的影响、反式作用因子对
15、转录的影响。1717、简述、简述 DNADNA 加工水平对基因表达的调控加工水平对基因表达的调控答:RNA 加工水平:a、rRNA 加工成熟,包括分子内的切割和化学修饰(主要是核糖甲基化)。b、mRNA 加工成熟,包括 mRNA5末端加“帽子”,3端加上 polyA 尾巴。c、tRNA 的 3末端 CCA-OH,5端加上甲基鸟苷酸。翻译水平:a、真核生物 mRNA“扫描模式”与蛋白质合成的起始。b、mRNA 的稳定性与基因表达的调控。c、mRNA5端帽子结构的识别与蛋白质的合成。d、可溶性蛋白因子的修饰与翻译起始调控1414、简述、简述 TrpTrp操纵子的结构及其调控机制。操纵子的结构及其调
16、控机制。答:Trp 操纵子由 5 个结构基因 TrpE、TrpD、TrpC、TrpB、TrpA 组成一个多顺因子的基因簇,在 5端是启动子、操纵子、前导顺序和弱化子区域。机制:a、辅阻蛋白参与的负调控阻遏调节。/、trp 诱导物含量高,与游离的辅阻遏蛋白相结合,形成有活性阻遏物,与操纵子区 DNA 紧密结合,进行转录。/、trp 诱导物含量低,不能与辅阻遏物结合,辅阻遏物从 O 区上解离,trp 操纵子阻遏转录进行。b、弱化作用。/、trp 浓度高时,2-3 不配对,3、4 区自由配对形成茎环状终止结构,转录停止。/、trp 浓度低时,2,3 配对,4 区片段无配对,结构基因转录。1515、细
17、菌的、细菌的 trptrp 操纵子为什么除需要阻遏体系外还需要弱化系统。操纵子为什么除需要阻遏体系外还需要弱化系统。答:细菌的 trp 操纵子通过弱化作用弥补阻遏作用的不足,因为阻遏作用只能使转录不起始,而对于已经起始的转录,只能通过弱化作用使之中途停顿下来,阻遏作用的信号是细胞内 trp 的多少,弱化作用的信号是细胞内载有 trp 的 tRNA 的多少,两种作用相辅相成,体现周密的调控作用。1616、简述原核生物转录后调控的机制。、简述原核生物转录后调控的机制。答:a、mRNA 自身结构元件对翻译起始的调节。b、mRNA 稳定性对转录水平的影响。c、调节蛋白的调控作用。d、反义 RNA 的调
18、节作用。e、稀有密码子对翻译的影响。f、重叠基因对翻译的影响。g、翻译的阻遏。h、魔斑核苷酸水平对翻译的影响。1717、简要概括真核生物基因表达调控的、简要概括真核生物基因表达调控的 7 7 个层次个层次答:a、转录水平的调控,包括基因的开与关和转录效率的高与低。b、DNA 水平上的表达调控,包括基因丢失、扩增、交换、重排、DNA 甲基化。c、转录水平的调控,顺式作用元件与特异转录因子结合影响转录,反式作用因子能识别结合于顺式作用元件上,参与调控。d、反式作用因子的 DNA 识别域或结合域。e、蛋白质修饰、磷酸化和去磷酸化。f、转录后水平的调控。g、翻译水平的调控 mRNA 的“扫描模式”与蛋
19、白质合成起始 mRNA5端帽子结构及 polyA 尾巴,mRNA 稳定性与基因表达调控,蛋白质的修饰。1818、真核基因表达调控与原核生物有什么异同点。、真核基因表达调控与原核生物有什么异同点。答:同:a、都有转录水平上调控和转录水平后调控,并且都以转录水平上的调控为重要。b、在结构基因的上下游都存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否,调控基因的转录。异:a、真核基因表达调控环节多,位点多,区域大,位置多样化。b、真核基因的转录与染色质的结构变化相关。c、无操纵子和衰减子。d、受环境影响小。e、以正性调控为主。f、调控的基因组很大,而原核基因组小。1919、简述、
20、简述 DNADNA 水平对真核基因表达的调控。水平对真核基因表达的调控。答:DNA 水平的调控是真核生物发育调控的一种形式,包括基因丢失,扩增,重排和移位等方式,通过这些方式可以消除或变换某些基因并改变它们的活性。主要有:a、染色质状态对基因表达调控。b、修饰作用(乙酰化甲基化)与染色质状态的关系。c、基因丢失,扩增,重排,交换。2020、真核基因顺式作用元件及各自的特点。、真核基因顺式作用元件及各自的特点。答:a、启动子,位于转录起始点附近且为转录起始所必需的 DNA 序列。/、核心启动子,指保证 RNA 聚合酶 2 转录正常起始所必需的,最少的 DNA 序列,包括转录起始位点及位点上游-3
21、0-负 25bp 处的 TA TA区。/、上游启动子元件,包括通常位于-70bp 附近的 CAAT区和 GC 区等能通过 TF2D 复合物调节转录起始的频率,提高转录效率。b、增强子,指能使与之连锁的基因转录频率明显增加的 DNA 序列,位于离转录起始点较远位置上,具有参与激活和增强起始功能的序列元件。c、绝缘子,负调控作用元件(与增强子作用相反)。2121、反式作用因子的、反式作用因子的 DNADNA 结合域有哪几种?各自的结构特点?结合域有哪几种?各自的结构特点?答:a、螺旋-转折-螺旋结构(HTH)。这类蛋白质分子中有至少两个螺旋,中间由短侧连氨基酸残基形成“转折”,近羧基端的螺旋中 A
22、A 残基的替换会影响该蛋白在 DNA 双螺旋大沟中的结合。b、锌指结构。由小组保守的 AA 和锌离子结合,在蛋白中形成了相对独立的功能域,像一根根收支伸向 DNA 大沟。c、碱性-亮氨酸拉链。C/EBP 家族蛋白的羧基端35 个 AA 残基具有能形成螺旋的特点,其中每隔 6 个 AA 就有一个亮 AA 拉链,导致第七个亮 AA 残基都在螺旋的同一方向出现,这类蛋白都以 2 聚体形式与 DNA 结合,两个蛋白螺旋上的亮 AA-侧基形成拉链型 2 聚体的基础。d、碱性-螺旋-环-螺旋,(BHLH 结构)。羧基端 100-200 个 AA 残基可形成两个双性螺旋,被非螺旋的环状结构所隔开,蛋白质的氨
23、基端则是碱性区,其 DNA 结合特性与亮 AA 拉链类蛋白相似。e、同源域蛋白。同源域是指编码 60 个保守氨基酸序列的 DNA片段,广泛存在真核生物基因组内,该遗传位点的基因产物决定了躯体发育。2222、真核基因转录调控的主要模式、真核基因转录调控的主要模式答:启动子、转录模板、RNA 聚合酶 2、RNA 聚合酶 2 基础转录所需的蛋白质因子、增强子及绝缘子对转录的影响、反式作用因子对转录的影响。2323、简述、简述 DNADNA 加工水平对基因表达的调控加工水平对基因表达的调控答:RNA 加工水平:a、rRNA 加工成熟,包括分子内的切割和化学修饰(主要是核糖甲基化)。b、mRNA 加工成
24、熟,包括 mRNA5末端加“帽子”,3端加上 polyA 尾巴。c、tRNA 的 3末端 CCA-OH,5端加上甲基鸟苷酸。翻译水平:a、真核生物 mRNA“扫描模式”与蛋白质合成的起始。b、mRNA 的稳定性与基因表达的调控。c、mRNA5端帽子结构的识别与蛋白质的合成。d、可溶性蛋白因子的修饰与翻译起始调控2424 什么是有意义链、反义链?什么是有意义链、反义链?意义链:与 mRNA 序列相同的那条 DNA 链,又叫编码链反义链:另一条根据碱基互补原则指导 mRNA 合成的 DNA 链,又叫模板链2525 生物体内主要有几种生物体内主要有几种 RNARNA?m RNA:编码特定蛋白序列r
25、RNA:直接参与核糖体中蛋白质的合成t RNA:能特异性解读 m RNA 中的遗传信息,将其转化成相应的氨基酸后加入多肽链中Sn RNA:小核 RNA,是真核生物转录后加工过程中 RNA 剪接体的主要成分.Hn RNA:指导 RNA,核酶 RNA2626 转录包括哪几个基本过程?转录包括哪几个基本过程?1.2.3.4.模板识别:RNA 聚合酶与启动子 DNA 双链互相作用与之相结合的过程转录起始:RNA 链上第一个核苷酸链的产生转录延伸:RNA 聚合酶释放因子离开启动子后,核心酶沿模板 DNA 链移动并使新生 RNA 链不断伸长转录终止:RNADNA 杂合物分离,转录泡瓦解,DNA 恢复成双链
26、状态,RNA 聚合酶和 RNA 链从模板上释放出来2727 简述大肠杆菌简述大肠杆菌 RNARNA 聚合酶的亚基组成及其主要功能聚合酶的亚基组成及其主要功能答:大肠杆菌主要由2 个亚基:核心酶组装,启动子识别,1 个亚基,1 个亚基:两种亚基共同组成 RNA 合成的活性中心,受 K 酶抑制(亚基与模板结合)1 个亚基:功能未知1 个亚基:识别不同的启动子,促进转录的起始2828 简述真核细胞简述真核细胞 RNARNA 聚合酶的细胞定位及其转录产物聚合酶的细胞定位及其转录产物答:RNA 聚合酶,细胞内定位核仁,转录产物是除了 5S rRNA 的各种 rRNARNA 聚合酶,定位核质,产物 hnR
27、NA、mRNARNA 聚合酶,定位核质,产物 tRNA、5s RNA、Sn RNA2929 什么是启动子?什么是转录单元?什么是增强子?什么是启动子?什么是转录单元?什么是增强子?答:启动子:是 DNA 转录起始信号的一段序列,能指导全酶与模板正确结合,并活化酶,使之具有起始特异性转录形成转录单元:一段可被 RNA 聚合酶转录成一条连续 mRNA 链的 DNA,从启动子开始至终止子结束的 DNA 序列。增强子:能强化转录起始的序列,也叫强化子。3030 简述原核和真核生物启动子的结构特点简述原核和真核生物启动子的结构特点答:原核生物:启动子在两段由5 个核苷酸组成的共同序列,即位于10bp 处
28、的 TA TA区(也叫 pribnow 区),和35bp 处的 TTGACA区,他们是 RNA 聚合酶与启动子结合位点,能与因子相互识别而具有很高的亲和力真核生物:启动子在3025bp 处的 Hogness 区,类似 pribnow 区,在7080bp 区有 CAAT区(与35 区序列相对应),在11080 的 GC 区(GCCACACCC 或 GGGCGGG 序列)3131 什么是什么是 SDSD 序列?序列?答:原核生物起始密码子 AUG 上游 712 个核苷酸的保守区,能与 16s rRNA 的 3端反向互补3232 简述真核生物简述真核生物 mRNAmRNA 的结构与原核生物的结构与原
29、核生物 mRNAmRNA 的结构的区别的结构的区别答:、真核生物 mRNA 具有前体,需要转录后加工成成熟 RNA 才能与蛋白质合成、原核生物 mRNA 以多顺反子形式存在,一个 mRNA 可编码几个多肽;真核生物 mRNA 最多只能编码一个多肽、原核生物 mRNA 的 5端无帽子结构,3端没有或只有较短的 polyA;而真核生物 mRNA 的 5端存在帽子结构,绝大多数正所谓 3端有 polyA 结构、原核生物 mRNA 起始密码子 AUG 上游有 SD 序列的保守区、起始密码子原核生物的有 AUG(有时 GUG,UUG),真核生物只有 AUG3333 转录终止有几种机制?各有何特点?转录终
30、止有几种机制?各有何特点?答:、依赖因子的终止:因子是一个由 6 个相同亚基组成的六聚体,具有 NTP 酶和解螺旋酶活性,能水解各种核苷酸三磷酸,通过催化 NTP 的水解促使新生 RNA 链从三元转录复合物中解离出来,从而终止转录、不依赖因子的终止:没有任何其他因子的参与,核心酶也能在某些位点终止转录,因模板 DNA 上存在终止转录的特殊信号终止子1.终止位点上游一般存在一个富含 GC 碱基的二重对称区,由这段 DNA 转录产生的 RNA 容易形成发卡式结构2.在终止位点前有一段 48 个 A 组成的序列,所以转录产物的 3端为寡聚 U,这种结构特征的存在决定了转录的终止3434 抗终止的方式
31、主要有哪几种?抗终止的方式主要有哪几种?答:、破坏终止位点 RNA 的茎环结构:当介质中氨基酸浓度较低时,缺乏相应的氨酰tRNA,致使核糖体滞留在串联密码子上,mRNA 不能形成特定的二级结构,末端的茎环结构被破坏,因此转录仍能继续下去,出现转录的抗终止现象、依赖于蛋白质因子的转录抗终止:蛋白质识别终止子附近 DNA 位点的二重对称序列转录产生的茎环结构并与之结合,改变聚合酶的构象,使之对终止信号不敏感,继续催化 RNA 链的合成3535 内含子的分类及剪接机制内含子的分类及剪接机制(含剪接信号、转酯反应等)含剪接信号、转酯反应等),各类内含子剪接过程的异同。,各类内含子剪接过程的异同。答:内
32、含子的分类:GUAG,AUAC,类内含子,类内含子,类内含子,双内含子,pretRNA 中的内含子。类内含子的剪接主要是转酯反应,即剪接反应实际上是发生了两次磷酸二酯键的转移;类内含子切除体系中,转酯反应无需游离鸟苷酸或鸟苷,而是由内含子本身的靠近3短的腺苷酸 2OH 作为亲核基因攻击内含子 5端的磷酸二酯键,从上游切开 RNA 链后形成套索环结构,再由上游外显子的自由 3OH 作为亲核基因攻击内含子 3端的磷酸二酯键,使内含子被完全切开,上下游两个外显子通过新的磷酸二酯键键相连。发生了两次转酯反应。类内含子主要依靠 Sn RNP 发生 2 次转酯反应,在哺乳动物中,mRNA 前体上的 Sn
33、RNP 是从 5向下游“扫描”悬着在分支点富嘧啶区 3下游的第一个 AG 作为剪接的 3位点。剪接机制:组成型剪接:需要外界能量和各种酶形成复合物剪接;自我剪接:不需外源酶和能量,剪接特征由 35s RNA 自我催化完成;选择性剪接:同一前体 mRNA 中的外显子通过不同组合形成不同的成熟 mRNA 分子36.RNA36.RNA 编辑的种类及意编辑的种类及意答:种类:位点特异性脱氨基作用和引导 DNA 指导的尿嘧啶的插入或删除意义:1、能够改变和补充遗传信息2、增加基因产物的多样性3、与生物细胞发育与分化有关4、校正作用5、翻译调控3737)简述遗传密码的基本特性)简述遗传密码的基本特性答:共
34、有 64 个密码子,其中有1 个起始密码子(AUG)和 3 个终止密码子(UAG,UAA,UGA);具有通用性,即不论病毒、原核生物密码子的含义都是相同的;具有方向性,从 N 端到 C 端;两种密码子之间无任何核苷酸或其他成分加以分离,即密码子无逗号;具有简并性,即由一种以上密码子编码同一种氨基酸的现象;每个密码子三联体决定一个氨基酸。3838)简述遗传密码的简并性及其生物学意义,遗传密码的通用性和特殊性。)简述遗传密码的简并性及其生物学意义,遗传密码的通用性和特殊性。答:1、简并性:由一种以上密码子编码同一个氨基酸的现象称为简并性。其意义:、可以减少有害突变;、使物种较为稳定;、密码子中的碱
35、基被改变,任然能编码原来氨基酸的可能性大为提高。2、通用性:遗传密码无论是体内还是体外,也无论是对病毒还是细菌、动物、植物而言,都是通用的。其意义:、有助于研究生物进化;、通用性在遗传工程中得到充分运用3、特殊性:虽然密码子是通用的,但也发现极少数的例外,如线粒体密码子,线粒体中的 UGA 不代表终止密码,而是编码 Trp,由 AUG 和 AUA 两个密码编码甲硫氨酸,AGA 和 AGG 不是 Arg 的密码子,而是终止密码子3939)核糖体的组成结构及功能)核糖体的组成结构及功能答:组成结构:由大、小两个亚基,许多不同的核糖体蛋白质子和核糖体RNA 共同组成,有 3 个 tRNA 的结合位点
36、(A、P、E 位点)功能:、在多肽合成过程中,不同的 tRNA 将相应的氨基酸带到蛋白质合成部位,并与 mRNA 进行专一性的相互作用,以选择对信息专一的氨基酸tRNA、核糖体容纳另一种携带肽链的 tRNA,即肽酰tRNA,并使之处于肽链容易生成的位置上。、核糖体小亚基负责对 mRNA 进行序列特异性识别;大亚基负责携带氨基酸以及 tRNA 的功能,包括肽键的形成,氨基酸tRNA,肽酰tRNA 的结合等4040)蛋白质前体的加工主要内容)蛋白质前体的加工主要内容答:1、N 端 f Met 或 Met 的切除:N 端的甲硫氨酸往往在多肽合成完毕之前被切除2、二硫键的形成:蛋白质的二硫键是蛋白质合
37、成后,通过两个半胱氨酸的氧化作用生成的,密码子中没有胱氨酸的密码子。3、特定氨基酸的修饰:氨基酸侧链的修饰包括磷酸化、糖基化、甲基化、已基化、羟基化和羧基化等。4、切除新生肽链中的非功能片段:不少肽类激素和酶的前体都要经过加工才能变成活性分子4141)蛋白质转运的主要机制)蛋白质转运的主要机制答:1、翻译转运同步机制:由信号肽介导协助转运。蛋白质其实首先合成信号肽SRP 与信号肽结合,翻译暂停SRP 与 SRP受体结合,核糖体与膜结合,翻译重新开始信号肽进入膜结构蛋白质过膜,信号肽被切除,翻译继续进行蛋白质完全过膜,核糖体解离并回复翻译起始前状态。2、翻译后转运机制:由前导肽介导协助转运,线粒
38、体和叶绿体中的蛋白质。蛋白质由外膜上的 Tom受体复合蛋白识别与分子伴侣相结合形成转运多肽,通 Tom和 Tim组成的膜通道进入内腔蛋白酶水解前导肽。3、核定位蛋白的转运机制:细胞质中的蛋白质通过核孔到达细胞核(装配)运回细胞质进行转运。如:RNA,DNA 聚合酶,组蛋白,拓扑异构酶等4242)信号肽的结构特征及功能)信号肽的结构特征及功能答:结构特征1、一般带有1015 个疏水氨基酸,位于蛋白质的N 端;2、在靠近N 端有一个或数个带正电荷的氨基酸;3、C 端有一个能被信号肽识别的位点;4、没有严格的专一性;5、信号肽可能是一种环状结构,而非是以一种直线通过双脂层膜;(6、在C 端靠近蛋白酶
39、切点处常有数个极性氨基酸,离切割位点最近的那个氨基酸往往带有很短的侧链;7、广义上的信号肽是初生蛋白质穿过膜必须的疏水性肽段,它位于蛋白质各部位。)功能:1、保证蛋白质顺利转运;2、延伸功能;3、能和新生的分泌蛋白的信号肽相结合;4、能和位于膜上的蛋白受体相结合。4343)蛋白质合成的过程,参与因子等)蛋白质合成的过程,参与因子等答:【原核】1、氨基酸的活化:氨基酸+ATP+tRNA(氨酰tRNA 合成酶)AMP+PPi+AAt RNA。起始氨基酸:fMet2、翻译的起始:7 种成分:30s 小亚基,模板 mRNA、fMettRNAfMet、起始因子 IF-1、IF-2、IF-3、GTP、50
40、s 大亚基、Mg2+。三个步骤:、30s 小亚基+IF-1,IF-3(SD 序列)mRNA 模板结合、fMettRNAfMet(IF-2,GTP)进入小亚基的 P 位,tRNA 上的反密码子与 mRNA 上的起始密码子配对、小亚基复合物(tRNA,mRNA,起始因子)+50s 大亚基(GTP 水解)释放起始因子。3、肽链的延伸:第一个氨基酸 fMettRNA 与核糖体结合后就沿肽链延伸,包括后续 AAtRNA 与核糖体结合,太贱的生成,移位。4、肽链的终止:终止密码子出现在核糖体的 A 位时,没有相应的 AAtRNA 能与之结合,释放因子能识别,并催化 GTP 水解,使肽链与核糖体解离。5、蛋
41、白前体的加工:N 端 fMet 或 Met 的切除,二硫键的形成,特定 AA 的修饰,切除新生肽键中的非功能片段6、蛋白质的折叠4444)原核与真核生物蛋白质合成起始的差别)原核与真核生物蛋白质合成起始的差别答:1、原核生物的起始 tRNA 是 fMettRNAfMet,真核生物是 MettRNAMet。2、原核生物中 30s 小亚基先与 mRNA 模板相结合,最后与 50s 大亚基结合;而在真核生物中,40s 小亚基首先与 MettRNAfMet 结合,再与模板 mRNA 结合,最后与 60s 大亚基结合生成 80s?mRNA?MettRNAfMet 起始复合物。1 1、影响大肠杆菌系统外源
42、基因表达的因素?、影响大肠杆菌系统外源基因表达的因素?答:1、启动子的强弱;2、基因的剂量;3、影响 RNA 转录和翻译效率的因素:SD 序列、mRNA;4、外源基因密码子的选择;5、表达产物的大小;6、表达产物的稳定性。2 2、大肠杆菌系统表达外源基因必须具备的条件?、大肠杆菌系统表达外源基因必须具备的条件?答:A、要求外源基因的编码区不能含有内含子;B、表达的外源片段要位于大肠杆菌启动子的下游,并形成正确的阅读框架;C、转录出的 mRNA 必须有与大肠杆菌 16S rRNA3,末端相匹配的 SD 序列,才能被有效的翻译成蛋白质。D、蛋白产物必须稳定,不易被细胞内蛋白酶快速降解,且对宿主无害
43、。4 4、正调控和负调控的主要不同是什么?、正调控和负调控的主要不同是什么?答:负调控时,调节基因的蛋白质产物是基因活性的一种阻遏物,而在正调控时,调节基因的产物是一种激活物。5 5、区别、区别(1)(1)启动子增效突变与启动子减效突变;启动子增效突变与启动子减效突变;(2)(2)上游序列和下游序列。上游序列和下游序列。答:(1)启动子内部的突变会增强或降低转录水平。(2)同启动子有关,下游序列同转录的方向一致;上游序列同转录方向相反。6 6、解释为什么操纵子和启动子是反式隐性、顺式显性的,而编码阻碍蛋白的基因既是反式、解释为什么操纵子和启动子是反式隐性、顺式显性的,而编码阻碍蛋白的基因既是反
44、式显性又是顺式显性。显性又是顺式显性。答:操纵基因和启动子突变只影响顺式基因的表达(反式隐性的),这是因为它们是调控序列,仅仅调节相同 DNA 分子上的相邻基因的表达。阻遏物基因编码可以扩散的基因产物,因此既能影响顺式又能影响反式基因的表达。7 7、哪三个序列对原核生物、哪三个序列对原核生物 mRNAmRNA 的精确转录是必不可少的的精确转录是必不可少的?答:-35(RNA 聚合酶结合位点)、-10(RNA 荣合酶起始位点)启动子序列和终止子9 9、什么是安慰诱导物、什么是安慰诱导物?答:安慰诱导物是一种与天然诱导物结构相似的化合物,它虽然能诱导操纵子表达,但是它不能被操纵子基因产生的酶分解。
45、在lac操纵子中异丙基硫代半乳糖苷(IPTG)是乳糖的类似物能代替异乳糖作为诱导物,但不能作为-半乳糖苷酶的底物进入代谢途径。1010、葡萄糖是如何影响涉及糖代谢的操纵子、葡萄糖是如何影响涉及糖代谢的操纵子(葡萄糖敏感型操纵子葡萄糖敏感型操纵子)的表达的表达?答:在缺乏葡萄糖时,cAMP 的水平升高,CAP 蛋白同每一个葡萄糖敏感操纵子中启动子内的 CAP 位点结合,转录作用协同起始。如果有葡萄糖,cAMP 的水平下降,CAP 蛋白不再结合,转录的速率协同下降。1212、讨论原核生物基因表达的聚合作用反应定向的重要性。假如核糖体从、讨论原核生物基因表达的聚合作用反应定向的重要性。假如核糖体从
46、3 3端到端到 5 5端读它的端读它的模板模板 mRNAmRNA 的话,那么将会发生什么情况的话,那么将会发生什么情况?答:原核基因表达在空间和时间上是复杂和高度精细的过程。为了保持反应的自由碰撞,转录和翻坪的定向是相当重要的。同时发生在两条链的 5 3方向的环状 DNA 的复制开始减慢,最后停止在特殊的终止序列上。翻译过程中,核糖体总是追赶着 RNA 聚合酶。由于mRNA 是单链分子而且容易被降解,因此翻译不可能发生在 35的方向。1313、概括细菌细胞内的转录过程。、概括细菌细胞内的转录过程。答:转录是通过 RNA 聚合酶(RP)的作用,以一条 DNA 链为模板产生一条单链 RNA 的 过
47、程。步骤如下:(1)与 RP 全酶的结合:一个 RP 全酶分子与待转录的 DNA 编码序列上游的启动 子序列松弛地结合。(2)起始:RP 往下游移动了几个核苷酸到达启动子的另一段短序列Pribnow 框,紧密地与 DNA 结合。DNA 上的启动子区域解链,RNA 便从 Pribnow 框下游的几个核苷酸处开始合成,通常是 DNA 的反义链作为模板。合成几个核苷酸后,因子被释放并被循环使用,以下的步骤不再需要因子(3)延伸:四核心酶沿着DNA 模板移动,使 DNA 解链,与 DNA 模板的下一碱基互补的核苷三磷酸聚合到链上。RP 继续在 DNA 上移动,RNA 链从模板链被释放出来,DNA 双螺
48、旋重新形成(4)终止:当所有编码序列被转录后,RP 移到一个终止序列,即终止子。转录复合体解体,RP 和新合成的 RNA 从 DNA 模板脱落下来。1 1、阐述原核生物的转录终止。、阐述原核生物的转录终止。(1)(1)转录终止的两种主要的机制是什么转录终止的两种主要的机制是什么?(2)?(2)描述翻译怎样能调节转录终止。描述翻译怎样能调节转录终止。(3)(3)为什么在细菌转录终止中为什么在细菌转录终止中很少涉及到很少涉及到 RhoRho 因子因子?(4)?(4)怎样能阻止转录的终止怎样能阻止转录的终止?答:原核生物中的转录终止作用概要如下:(1)原核生物中两种不同的转录终止机制:在某一位点不需
49、要其他因子协助仅依赖于内在终止子的终止机制;依赖于肋因子的终止机制。(2)翻译可通过弱化作用调节转录终止,例如发生在氨基酸生物合成基因的表达中。前导肽的翻译可以调节结构基因下游的转录。这种调节的重要性充分体现在氨基酸的生物合成中(例如色氨酸)。原核细胞中转录和翻译是同时发生的,正在翻译的核糖体就像在追赶正在转录的 RNA 聚合酶。具有所需氨酰 tRNA 时,核糖体可将前导序列翻译成前导肽,而在前导开放读码框的终止密码子处终止翻译。新生的 mRNA 自由形成 3-4 茎环(完全配对)终止结构,所以阻碍了 DNA 指导的 RNA 聚合酶的前进,结构基因的下游转录终止,即发生弱化现象。若某种氨基酸短
50、缺,则会导致相应的氨酰tRNA 短缺,核糖体终止在前导可读 框中所短缺的氨基酸密码子上。2-3 茎环形成抗终止子,这一茎环不是聚合酶的终止信号,它可以防止 3-4 茎环的形成,使结构基因的转录进行下去。(3)在原核生物中、转录与翻译是同时进行的,意味着核糖体追赶着DNA 指导的 RNA 聚合酶。Rho 因子是一个依赖于 RNA 的 ATP水解酶,能够在转录过程中将在转录泡中的 RNA-DNA 杂合体分开。因此它顺着转录的方向(53)追赶 DNA 指导的 RNA 聚合酶。若核糖体正好妨碍了它的前进,则依赖于肋因子的终止反应不会发生。(4)最为常见的机制是抗终止(参见噬菌体遗传学)。抗终止于是一种