《医学统计学复习知识点汇集.pdf》由会员分享,可在线阅读,更多相关《医学统计学复习知识点汇集.pdf(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、医学统计学知识点汇总医学统计学知识点汇总(精华精华)一一.概论概论1 1,医学统计学:,医学统计学:运用概率论和数理统计学的原理和方法,研究医学领域中随机现象有关数据的搜集、整理、分析和推断,进而阐明其客观规律性的一门应用科学。2 2,医学统计学的主要内容:,医学统计学的主要内容:1)统计研究设计调查研究设计和实验研究设计2)医学统计学的基本原理和方法 研究设计和数据处理中的基本统计理论和方法。A:资料的搜集与整理 B:常用统计描述,集中趋势和离散趋势,相对数,相关系数,回归系数,统计表,统计图 C:统计推断,如参数估计和假设检验。3)医学多元统计方法 多元线性回归和逐步回归分析、判别分析、聚
2、类分析、主成分分析、因子分析、logistic 回归与 Cox 回归分析。3 3,统计工作步骤:,统计工作步骤:1)设计 明确研究目的和研究假说,确定观察对象与观察单位,样本含量和抽样方法,拟定研究方案,预期分析指标,误差控制措施,进度与费用。2)搜集材料A,搜集材料的原则 及时、准确、完整B,统计资料的来源 医学领域的统计资料的来源主要有三个方面。一是统计报表,二是经常性工作记录,三是专题调查或专题实验。C,资料贮存3)整理资料 a 检查核对 b 设计分组 c 拟定整理表 d 归表4)分析资料 统计分析包括统计描述和统计推断4,同质(homogeneity):指被研究指标的影响因素相同。变异
3、(variation):同质基础上的各观察单位间的差异。变量(variable):收集资料过程中,根据研究目的确定同质观察单位,再对每个观察单位的某项特征进行测量或观察,这种特征称为变量变量值:变量的观察结果或测量值。变量类型数 值 变离散型量连续型变量值表现实例产前检查次数计量资料资料类型定量测量值,有计量单身高位分类变无二分类对立的两类属性不相容的多类属性性别(男女)血型(A,B,O,AB)计数资料序多分类有多分类类间有程度差异的属受教育程度(小学,性中学,高中,大学)等级资料量序5,总体(population)根据研究目的所确定的同质研究对象中所有观察单位某变量值的集合。总体具有的基本特
4、征是:同质性样本(sample)从总体中随机抽取部分观察单位,其变量值的集合构成样本。样本必须具有代表性。代表性是指样本来自同质总体,足够的样本含量和随机抽样的前提。统计量(statistics)描述样本变量值特征的指标(本标准差)。样本率,样本均数,样参数(parameter)描述总体变量值特征的指标(数)。总体率,标准差,总体均抽样误差(sampling error):由于个体差异的存在,即使在同一整体中随机抽取若干样本,各样本的统计量往往不等,统计量与参数也会有所不同。这种因抽样研究引起的差异称抽样误差。随机事件(random event)对随机试验的各种可能结果的集合。概率(proba
5、bility)描述随机事件发生的可能性大些哦的一个度量。小概率事件 若随机事件 A 的概率 P(A),习惯上,=0.05 时,就称A 为小概率事件。其统计学意义是小概率事件在一次随机试验中认为不会发生。抽样误差抽样误差1,抽样误差(sampling error)由抽样而造成的样本统计量与总体参数之间的差异或各样本统计量之间的差异。在医学统计学中,常把由抽样造成的样本均数与总体均数间的差异称为均数的抽样误差;由抽样造成的样本率与总体率之间的差异称为率的抽样误差。2,样本均数的标准差的指标。(简称标准误,standard error)反映均数的抽样误差大小小,抽样误差小。大,抽样误差大;反之,实际
6、工作中(3.1)的估计值,计算标准误的估计值往往未知的,可用样本标准差 s 作。(3.2)3,标准误的用途:a,衡量样本均数的可靠性;b,估计总体均数的置信区间;3,用于均数的假设检验。4 4,标准误的估计值,标准误的估计值的用途:的用途:a,描述抽样误差的大小;b,总体参数的估计;c,用来进行假设检验。5 5,率的抽样误差:,率的抽样误差:由抽样造成的样本率与总体率的差异称为率的抽样误差。衡量率的抽样误差大小的指标是率的标准误大,率的抽样误差越大。越小,率的抽样误差越小;越其中(3.3)往往是未知的,可用样本率 p 作的估计值,为总体率。实际工作中,由于的估计值。计算率的标准误标准差(s)(
7、3.4)。标准误计算公式 s=(1)表示观察值的变异程度(1)估计均数的抽样误差的大小(2)估计总体均数的可信区间(,)(2)计算变异系数 CV=100%(3)确定医学参考值范围(3)进行假设检验(4)计算标准误简述标准差、标准误的区别与联系?简述标准差、标准误的区别与联系?区别:(1)含义不同:标准差S 表示观察值的变异程度,描述个体变量值(x)之间的变异度大小,S 越大,变量值(x)越分散;反之变量值越集中,均数的代表性越强。标准误估计均数的抽样误差的大小,是描述样本均数之间的变异度大小,标准误越大,样本均数与总体均数间差异越大,抽样误差越大;反之,样本均数越接近总体均数,抽样误差越小。(
8、2)与 n 的关系不同:n 增大时,S 趋于(恒定),标准误减少并趋于 0(不存在抽样误差)。(3)用途不同:标准差表示 x 的变异度大小、计算变异系数、确定医学参考值范围、计算标准误等,标准误用于估计总体均数可信区间和假设检验。联系:二者均为变异度指标,样本均数的标准差即为标准误,标准差与标准误成正比。标准差:二二.分布分布正态分布正态分布 1 1,正态分布的函数,正态分布的函数标准误:其中为总体均数,为总体标准差,为圆周率,为自然对数的底,且仅为变量。为纵轴,当均数和标准差已知时即可绘出正态分布曲线。以为横轴,以为应用方便,将式中进行变量变换,使原来的正态分布变为的标准正态分布,亦称分布。
9、被称为标准正态变量或标准正态离差,将代入上述公式即得标准正态分布的密度函数。(2.17)2 2,正态分布的特征,正态分布的特征(2.18)(1)正态曲线(normal curve)在横轴上方均数处最高。(2)正态分布以均数为中心,左右对称。(3)正态分布有 2 个参数(parameter),即均数当固定不变时,(位置)和标准差(形状)。越大,曲线沿横轴越向右移动;反之,越大,曲线越平阔;越小,则曲线沿横轴越向左移动。当(,固定不变时,越小,曲线越尖峭。通常用 N)表示均数为1、方差为的正态分布。用(0,1)表示标准正态分布。(4)正态分布在处各有一个拐点。(5)正态曲线下面积的分布有一定规律。
10、1.96及2.58的区间面积分别占总面积的 95%及 99%。3,常用的两个区间:4,正态分布的应用 1),制定医学参考值范围 a,正态分布法适用于正态或近似正态分布的资料 双侧界值:界:,或单侧下界:。;单侧上 b,对 数 正 态 分 布 法适 用 于 对 数 正 态 分 布 资 料双 侧 界 值:;单侧上界:,或单侧下界 c,百分位数法 常用于偏态分布资料及资料中一端或两端无确切数值的资料。双侧界值:和;单侧上界:,或单侧下界:。分布都是在正态分 2)正态分布是多种统计方法的理论基础如 t 分布,F 分布,布的基础上推导出来的,分布也是以正态分布为基础的。另外 t 分布,二项分布,pois
11、son 分布的极限为正态分布,一定条件下可按正态分布原理处理。t t 分布分布1,t 分布:t 分布的特征为:(3.5)1 以 0 为中心,左右对称的单峰分布。2 t 分布曲线形态变化与自由度的大小有关。自由度 越小,则t 值越分散,曲线越低平;自由度逐渐增大时,则 t 分布逐渐逼近正态分布(标准正态分布)。当=的概率为:时,t 分布为 u 分布。t 界值表附图中非阴影部分面积2,总体均数的估计:用样本指标估计总体参数称为参数估计,是统计推断的一个重要方面。总体均数的估计有 2 种方法。一是直接用统计量估计总体参数,称为点值估计。由于抽样误差的存在,此法很难估计准确。二是区间估计(interv
12、al estimation)法。区间估计是按一定的概率 100(1-)%估计总体均数所在的范围,亦称可信区间(confidence interval,CI)。常取的可信度为 95%和 99%,即 95%可信区间和 99%可信区间。计算方法有 3 种:(1)未知且 n 小 按 t 分布原理用式(3.6)计算可信区间。由于将代入,得则总体均数的 100(1-)%可信区间的通式为:(3.6)或写成(,)。但 n 足够大时(n100)t 分布逼近 u 分布,按正态分布原理,用式(3.7)(2)未知,估计可信区间。(3)(3.7)已知 按正态分布原理,用式(3.8)估计可信区间。()(3.8)标准正态分
13、布(标准正态分布(u u 分布)与分布)与 t t 分布有何异同?分布有何异同?答:相同点:t 分布和标准正态分布(u 分布)都是以 0 为中心的正态分布。标准正态分布是 t 分布的特例(自由度是无限大时)。不同点:t 分布为抽样分布,u 分布为理论分布;t 分布比标准正态分布的峰值低,且尾部翘得更高;t 分布受自由度大小的影响,随着自由度的增大,逐渐趋近于标准正态分布;t 分布有无数条曲线,而 u 分布只有唯一一条曲线。二项分布二项分布1,二项分布(binomial distribution)是对只具有 2 种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。二项分布概率公式:(3.9
14、)式中 n 为独立的贝努力试验次数,为成功的概率,(1-)为失败的概率,X 为在 n次贝努力试验中出现“成功”的次数,表示在 n 次试验中出现 X 的各种组合数,在此称为二项系数(binomial coefficient)。2,二项分布的应用条件:(1)各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡。(2)已知发生某一结果(阳性)的概率为要求,其对立结果的概率为1-,实际工作中是从大量观察中获得比较稳定的数值。(3)n 次试验在相同条件下进行,且各个观察单位的观察结果相互独立。3,二项分布的性质:A,二项分布的均数和标准差 在二项分布的资料中,当和 n 已知时,它的均数及其标准
15、差如下:=n(3.11)(3.12)若均数和标准差不用绝对数表示,而是用率表示时,即对式(3.11)(3.12)分别除以 n,得:是样本率的标准误的理论值,当(3.15)B,二项分布的累计概率 二项分布的累计概率(cumulative probability)常用的有左侧累计和右侧累计 2 种方法。从阳性率为的总体中随机抽取 n 个个体,则(3.13)(3.14)未知时,常用样本率 p 作为的估计值,则:(1)最多有 k 例阳性的概率(2)最少有 k 例阳性的概率D,二项分布的形状取决于(1)当和 n 的大小:0.5 时,分布呈负偏态,且固定 n 时,分布随 n 的增大趋于对称。4,总体率的估
16、计总体率的估计也有点估计和区间估计,点估计是简单地用样本率来估计总体率;区间估计是求出总体率的可能范围。样本率的理论分布和样本含量n、阳性率 p 的大小有关,所以需要根据 n 和 p 的大小不同,分别选用下列 2 种方法。(一)查表法 当样本含量 n 较小,如n50,特别是p 很接近于 0 或 1 时,按二项分布的原理估计总体率的可信区间。(二)正态近似法 当样本含量 n 足够大,且样本率 p 或 1-p 均不太小,如 np 与 n(1-p)均大于 5 时,样本率的 p 的抽样分布近似正态分布,总体率(3.17)进行估计。的可信区间可按下列式PoissonPoisson 分布分布1,Poiss
17、on 分布 泊松分布是在(3.17)很小,样本含量 n 趋向于无穷大时,二项分布的极限形式。更多地用于研究单位时间、单位人群、单位空间内,某罕见事件发生的次数的分布。式中=n X=0,1,2(3.19)为 Poisson 分布的总体均数,X 为单位时间或单位空间内某事件的发生数,e 为自然对数的底,约等于 2.71828。在实际运算中,P(X)亦可按式(3.20)作递推计算。(3.20)2,Poisson 分布应用条件:A,要求事件的发生是相互独立B,发生的概率相等C,结果是二分类3,Poisson 分布的性质:A,该分布是一种单参数的离散型分布,其参数为件事平均发生的次数,又称强度参数。B,
18、Poisson 分布的方差和均数相等,即=,它表示单位时间或空间内某C,Poisson 分布的累计概率(1)最多为 k 次的概率(2)最少为 k 次的概率4,Poisson 分布的图形已知,就可按公式计算得出 X=0,1,2,时的 P(X)值,以 X 为横坐标,以 P(X)为纵坐标作图,即可会出 Poisson 分布的图形。值越小,分布越偏,随着布,当的增大,分布越趋于对称,当,=20 时,分布接近正态分)按正态分布处理。=50 时,可以认为 Poisson 分布呈正态分布 N(5,Poisson 分布具有可加性6,总体参数的估计由样本均数(样本计数)X 估计总体均数也有点(值)估计和区间估计
19、,区间估计的方法,需视样本计数(样本均数)X 的大小而定,X 小时用查表法,X 大时用正态近似法。(一)查表法当样本计数 X时,用 X 值查附表 poisson 分布的可信区间,可得总体均数的 95%或 99%可信区间。(二)正态近似法当样本计数 X50 时,可用正态近似原理下面公式求总体均数的 95%或 99%可信区间正态分布、二项式和泊松分布的关系正态分布、二项式和泊松分布的关系:二项分布(binomial distribution):对只具有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。Poisson 分布是在很小,样本含量 n 趋于无穷大时,二项分布的极限形式。当 v=时
20、,t 分布即为 u 分布,趋向正态分布。可信区间与参考值范围的区别可信区间与参考值范围的区别:意义、计算公式和用途均不同。(1)参考值范围是指同质总体内包括百分之几十个体值的估计范围。而可信区间是指在百分之几十的可信度估计的总体参数的所在范围。(2)同样的百分之几十,参考值范围是样本范围,可信区间是指可信度范围,二者有着本质的不同。(3)从意义来看,95参考值范围是指同质总体内包括95个体值的估计范围,而总体均数95可信区间是指按 95可信度估计的总体均数的所在范围。(4)从计算公式看,若指标服从正态分布,95参考值范围的公式是:1.96s。总体均数95可信区间的公式是:。前者用标准差,后者用
21、标准误。前者用 1.96,后者用为 0.05,自由度为 v 的 t 界值。(5)从用途上看,可信区间用来估计总体均数,参考值范围用来判断观察对象的某项指标是否正常。简述检验假设与可信区间的联系与区别简述检验假设与可信区间的联系与区别。答:(1)可信区间用于推断总体参数所在的范围,假设检验用于推断总体参数是否不同。前者估计总体参数的大小,后者推断总体参数有无质的不同。(2)可信区间也可回答假设检验的问题。但可信区间不能提供确切的 P 值范围,只能给出在水准上有无统计意义。(3)可信区间还可提示差别有无实际意义。统计图表统计图表1,绘制统计图的基本要求:A,根据资料性质和分析目的据顶适当图形。B,
22、标题应说明资料的内容、时间和地点,一般位于图的下方。C,图的纵、横轴应注明标目及对应单位,尺度应等距或具有规律性,一般自左而右、自下而上、由小到大。D,为使图形美观并便于比较,统计图的长宽比例一般为7:5,有时为了说明问题也可以变动。E,比较、说明不同的事物时,可用不同颜色或线条表示,并常附图例说明,但不宜过多。2,常用统计图的适用条件与绘制1 条图(bar graph)用等宽长条的高度表示按性质分类资料各类别的数值大小,用于表示它们之间的对比关系。2 圆图(pie graph)圆形图适用于百分构成比资料,表示事物各组成部分所占的比重或构成。3 百分条图(percent bar)意义及适用资料
23、同圆图,也称构成条图。4 线图(line graph)线图适用于连续性资料,以不同的线段升降来表示资料的变化,并可表明一事物随另一食物(时间)而变动的情况。5 直方图(histogram)直方图用于表达连续性资料的频数分布。6 散点图(scatter diagram)散点图以直角坐标系中各点的密集程度和趋势来表示两现象间的关系。常用在对资料进行相关分析之前适用。单变量资料单变量资料一,数值变量一,数值变量统计描述统计描述1,频数表的编制 求全距 定组段和组距 列频数表 画频数图2,频数分布的两个重要特征:集中趋势和离散趋势3,频数分布可以分为正态分布和偏态分布4,频数表的用途:揭示资料分布类型
24、和分布特征,以便选取适当的统计方法;便于进一步计算指标和统计处理;便于发现某些特大或者特小的可疑值。5,集中趋势的描述:均数 几何均数 中位数 百分位数6,均数(mean):算术均数的简称。常用=表示。7,中位数(median):一组由小到大按顺序排列的观察值中位次居中的数值,用M 表示。可用于描述任何分布,特别是偏态分布资料以及频数分布的一端或两端无确切数据资料的中心位置。8,百分位数(percentile)是一种位置指标,用表示。一个百分位数 P将一组观察值分为两部分,理论上有x%的观察值比它小,有(100-x)%的观察值比它大。可用于确定非正态分布资料的医学参考值范围。9,离散趋势的描述
25、:全距(range)四分位数间距(quartile)方差 标准差10,全距(range)亦称极差,为一组同质观察值中最大值和最小值之差。反映个体差异的范围,优点是计算简单,缺点是:1)只考虑最大最小值之间的差异,不能反映组内其他观察值的变异度;2)样本含量相差悬殊时不宜用全距比较。11,四分位数间距(quartile)上四分位数与下四分位数之差。常用于描述偏态频数分布以及分布的一端或两端无确切数值资料的离散程度。12,方差(variance)离均差的平方和表示。13,标准差(standard variance)的作用:a,估计变量值的离散程度 b,计算变异系数 c,与均数结合,估计变异值的频数
26、分布范围 d,计算标准误(总体)s=(样本)14,变异系数(coefficient of variation)常用于比较度量单位不同或均数相差悬殊的两组或多组资料的变异度。CV=假设检验100%1,假设检验(hypothesis test)亦称显著性检验(significance test),其基本思想是先对总体的参数或分布做出某种假设,如设总体均数(或率)为一定值;两总体均数(或率)相等;总体服从正态分布或两分布相同等,然后根据样本信息选用适当的方法,推断此假设应当拒绝或不拒绝。2,假设检验的一般步骤:(1)建立假设和确定检验水准:根据实际情况确定单、双侧检验,建立假设,确定检验水准;(2)
27、选定检验方法和计算统计量:根据设计的类型及研究目的选择合适的检验方法并计算出对应的统计量;(3)确定 P 值并做出推断结论。若 tt,v,则 P,按检验水准,拒绝 H0,接受H1,尚可认为差异显著有统计学意义;相反则差异不显著,无统计学意义3,假设检验时应注意的事项:(1)要有严密的抽样研究设计;样本必须是从同质总体中随机抽取的,要保证组间的均衡性和资料的可比性,可能影响结果的非处理因素在对比组间应尽可能相同或相近;(2)正确选择检验方法;根据现有的资料类型、设计类型、分析目的、样本含量等因素选用适当的检验方法,如不符合条件可做适当转换;(3)正确理解“差别无显著性”的含义,差别有统计学意义,
28、不能理解为两者差差大,也不能理解为所分析的指标在实际应用上就有“显著效果”。(4)检验假设的推断结论为概率结论,不能绝对化:检验水准人为规定,是相对的,报告结论时应列出检验统计量和 P 值的确切范围。(5)注意是单侧检验还是双侧检验I I 型错误和型错误和 IIII 型错误型错误:I 型错误(type I error)拒绝了实际上成立的体,由于抽样的偶然性得到了较大的t 值,所以拒绝了称为第一类错误,犯第一类错误的概率是。,即样本原本来自,接受了的总,这类弃真错误II 型错误(type II error)是不拒绝实际上不成立的本来自值,没有拒绝,即“存伪”即样本原的总体,但是由于抽样的偶然性,
29、得到了较小的 t 值,得到了较大的 P,这类存伪错误称为第二类错误,犯第二类错误的概率是1-正态性检验正态性检验:用均数和标准差描述资料的分布特征,对例数 n 较小的样本进行 t 检验时,首先要求样本取自正态分布的总体。两个方差的齐性检验两个方差的齐性检验:两样本均数比较的 t 检验和多个样本均数比较的方差分析要求各样本所来自的总体方差相等。两样本方差的齐性检验:式中为较大的样本方差,为较小的样本方差,和(4.12)为分子的自由度,为分母的自由度,相应的样本例数分别为。当两总体方差齐同时,F 值一般不会离 1 太远;若算得的 F 值较大,大于我们规定的界值时,就认为两样本所在总体的方差不齐。t
30、 t 检验检验t 检验:常用于总体标准差未知且样本含量较小时样本均数与总体均数的比较,成组设计的两个小样本的均数的比较及配对设计的两样本均数的比较。t 检验的应用条件:a,n50 b,样本来自正态分布的总体 c,两样本均数比较时要求两样本总体方差相等。1,单样本 t 检验(one sample t-test):样本均数与已知总体均数比较,目的是推断样本所代表的未知总体均数与已知总体均数有无差别。式中为样本均数,()(4.1)为已知总体均数,s 为样本标准差,n 为样本含量,为自由度。步骤如下(可为 u 检验)1)建立假设,确定检验水准。H0:=0 H1:0=0.052)计算统计量。已知,(总体
31、均数)0=,n=,=,s=3)确定 P 值,做出推断结论。按 v=n-1,查 t 界值表,得 P0.05(或 P0.05(或 P0.05(或 P50),或 n 虽小但总体标准差比较。1,单样本 u 检验(one sample u-test):已知时的样本均数与总体均数的比较、成组设计两样本均数的式中为样本均数,(4.4)为已知总体均数,s 为样本标准差,n 为样本含量。2,成组设计的两样本均数比较的u检验(two-sample u-test for independent samples):(4.5)式中,分别为两样本均数,、为两样本均数差值的标准误,、为分别为两样本的方差,分别为两样本例数。
32、标准正态分布(标准正态分布(u u 分布)与分布)与 t t 分布有何异同?分布有何异同?答:相同点:t 分布和标准正态分布(u 分布)都是以 0 为中心的正态分布。标准正态分布是 t 分布的特例(自由度是无限大时)。不同点:t 分布为抽样分布,u 分布为理论分布;t 分布比标准正态分布的峰值低,且尾部翘得更高;t 分布受自由度大小的影响,随着自由度的增大,逐渐趋近于标准正态分布;t 分布有无数条曲线,而 u 分布只有唯一一条曲线。方差分析方差分析1,方差分析的基本思想:按研究目的和设计类型,将总变异中的离均差平方和SS 和自由度分别分解成相应的若干部分,然后求得各相应部分的变异;由于其中的组
33、内(或误差)变异主要反映个体差异或抽样误差,其他各部分的变异与之比较得出统计量F 值,根据 F 值的大小确定 P 值,并做出推断。2,方差分析的优点:(1)不受比较组数的限制,可比较多组均数(2)可同时分析多个因素的作用(3)可分析同类间的交互作用3,方差分析的应用范围:(1)2 个或多个样本均数间的比较(2)分析 2 个或多个因素间的交互作用(3)回归方程的线性假设检验(4)多元线性回归分析中偏回归系数的假设检验(5)两样本方差齐性检验完全随机设计的方差分析:完全随机设计的方差分析:是将总变异中的离均差平方和 SS 和自由度分别分解成组间和组内两部分,SS/和 SS/SS分别为组间变异(MS
34、)和组内变异(MS),两者之比即为统计量 F。(1)总离均差平方和及自由度:SS=(5.2)(5.3)(2)组间离均差平方和、自由度和均方:SS=(5.4)(组数-1)(5.5)MS=(5.6)(3)组内离均差平方和、自由度和均方:SS=SS-SS(5.7)=N-k(样本量-组数)(5.8)MS=(5.9)当方差分析的推断结果为拒绝当方差分析的推断结果为拒绝 H H0 0,接受接受 H H1 1,各总体均数不同或不全相同时,各总体均数不同或不全相同时,应对均数进应对均数进一步两两比较,即多重比较一步两两比较,即多重比较(multiple comparisons)(multiple compar
35、isons)。可用 q 检验进行分析:式中差项均方(5.14)为方差分析的组内均方,若为两因素或两因素以上的方差分析,则为误;和分别为两样本的样本含量。配伍组设计资料的方差分析配伍组设计资料的方差分析配伍组设计亦称随机区组设计(randomized block design),其多个样本均数比较可用无重复数据的两因素方差分析(two-way ANOVA)。2 个因素是指主要的研究因素和配伍组因素。两因素的方差分析是把总变异中的离均差平方和与自由度分别分解成处理组间、配伍组间和误差三部分。计算公式如下:变异来源总处理组间配伍组间误差SS-SS(k-1)(b-1)b-1离均差平方和-Ck-1自由度
36、均方 MSF-SS,为配伍组数二,分类变量二,分类变量统计描述统计描述常用相对数,即率,构成比,和相对比对分类资料进行统计描述1,率(rate):率又称频率指标,它说明某现象发生的频率或强度率=2,构成比(proportion):又称构成指标,它说明一事物内部各组成部分所占的比重或分布,常以百分数表示构成比=3,相对比(relative ratio)亦称比,是 A,B 2 个有关指标之比,说明 A 和 B 的若干倍或百分之几,是相对数的最简单形式。A,B 性质可相同可不同。相对比=4 4,应用相对数时应注意的事项:(一)计算相对数的分母不宜过小。(二)分析时不能以构成比代替率。(三)对观察单位
37、数不等的几个率,不能直接用相加求其平均率。(四)资料的对比应注意可比性。(五)对样本率(或构成比)的比较应遵循随机抽样,要做假设检验。(六)区别清分子分母。5,率的 u 检验1),样本率与总体率比较:目的是推断样本率所代表的总体率 与某已知总体率是否相等。根据资料的不同情况,可以采用不同的假设检验方法:若Poisson 分布原理做检验;若本含量 n 足够大时,或且很小,可用不太靠近 0 或 1 时,可用二项分布原理做检验;当样,二项分布逼近正态分布,可用 u 检验计算其样本检验统计量。式中 p 为样本率,(6.1)为已知总体率(常为理论值或标准值),n 为样本含量。2),两样本率比较:两个样本
38、率作比较的目的是推断两个样本各自代表的两总体率是否相等,当两个样本满足正态近似条件且样本含量较大时,可用u 检验,其公式:(6.2)式中、分别为两个样本率,为合并阳性率,检验检验、分别为两样本含量,、为两个样本率之差的为两个样本阳性例数。标准误,四格表资料的四格表资料的适用于分类变量资料中推断两个或多个总体率(或构成比)之间有无差别,两个分类指标之间有无相关关系的检验以及检验频数分布的拟合优度。(6.3)可用同样方法求得,其计算式中 A 代表实际频数,T 代表理论频数。格子理论频数公式为:(6.4)(6.5)四格表资料的专用公式:式中 a、b、c、d 分别为四格表的实际频数=a+b+c+d。四
39、格表的四格表的值的校正。值的校正。(6.6)当所有 T5,n40 时用上述公式;当有 1T40 时,需进行连续性校正:(6.7)(6.7)或 n=40,T=5,n=40,1T5,n40 或 T3.84,P40 时:b+c3.84,P0.05,按=0.05 检验水准,不拒绝 H0,可以认为两者的总体分布相同;若T 值=界值或在界值范围外,P25%),应校正:uc=?1.96,P0.05。按=0.05 检验水准,拒绝 H0,接受 H1,可以认为两的分布位置不同。非参数统计检验的适用条件:非参数统计检验的适用条件:(1)资料不符合参数统计法的应用条件(总体为正态分布、且方差相等)或总体分布类型未知;
40、(2)等级资料;(3)分布呈明显偏态又无适当的变量转换方法使之满足参数统计条件;(4)在资料满足参数检验的要求时,应首选参数法,以免降低检验效能。直线回归方程的应用直线回归方程的应用:(1)定量描述两变量之间的依存关系;(2)利用回归议程进行预测;(3)利用回归议程进行统计控制。应用直线回归的注意事项:应用直线回归的注意事项:(1)作回归分析要有实际意义;(2)直线回归分析的资料,一般要求因变量 Y 是来自正态分布总体的随机变量,自变量 X 可以是正态随机变量,也可以是精确测量和严格控制的值.(3)进行回归分析时,应先绘制散点图,如提示有直线趋势,可作线性回归分析,否则应考虑作数据转换或进行非
41、线性回归;(4)对离群值应检查核对,予以修正或剔除;(5)回归直线不要外延。简述直线相关与回归的区别与应用。简述直线相关与回归的区别与应用。答:区别:(1)资料要求不同,相关要求两个变量是双变量正态分布;回归要求应变量 Y 服从正态分布,而自变量X 是能精确测量和严格控制的变量。(2)统计意义不同,相关反映两变量间的伴随关系这种关系是相互的,对等的;不一定有因果关系;回归则反映两变量间的依存关系,有自变量与应变量之分,一般将“因”或较易测定、变异较小者定为自变量。这种依存关系可能是因果关系或从属关系。(3)分析目的不同,相关分析的目的是把两变量间直线关系的密切程度及方向用一统计指标表示出来;回
42、归分析的目的则是把自变量与应变量间的关系用函数公式定量表达出来。联系:(1)变量间关系的方向一致,对同一资料,其r 与 b 的正负号一致。(2)假设检验等价,对同一样本,tr=tb,由于tb 计算较复杂,实际中常以r 的假设检验代替对b 的检验。(3)相关和回归可以相互解释,相关系数的平方 r2(又称决定系数)是回归平方和与总的离均差平方和之比,故回归平方和是引入相关变量后总平方和减少的部分。(4)对于 II 型回归,r 与 b 值可相互换算,简述相关系数和回归系数的联系与区别。简述相关系数和回归系数的联系与区别。答:区别:(1)两种系数的意义不同:回归系数是表明两个变量之间数量上的依存关系,
43、回归系数越大回归直线越陡峭,表示应变量随自变量变化越快;相关系数是表明两个变量之间相关的方向和紧密程度的,相关系数越大,两个变量的关联程度越大。(2)r 与 b 有区别,回归系数 b 表示 X 每增(减)一个单位,Y 平均改变 b 个单位;相关系数 r 说明具有直线关系,收集整理的两个变量间相关关系的密切程度与相关方向。(3)。计算公式不一样。(4)取值范围不一样:-b+,-1r1。(5)单位不同:b 有单位,r 没有单位。联系:(1)r 与 b 值可相互换算,;(2)r 与 b 正负号一致;(3)r 与 b 的假设检验等价;(4)回归可解释相关。相关系数的平方 r2(又称决定系数)是回归平方
44、和与总的离均差平方和之比,故回归平方和是引入相关变量后总平方和减少的部分。判别分析判别分析:是根据一批已知类别的样品多指标观察数据,制定出一个分类标准,以指导对未知类别煌新个体归类的多元统计分析方法。协方差分析协方差分析:是把直线回归分析与方差分析结合焉的一种统计分析方法,用来消除混杂因素对处理效应的影响,提高分析结果的真实性,属多元统计方法范畴。思想:将因变量 Y 的残差分为两部分,即为修正均数间的变异和组内残差。应用条件:A.各样本来自正态分布总体,且总体方差相等;B.各处理组的总体直线回归系数相等,且都不为 0。FisherFisher 准则准则:从方差分析的观点,要求投影点的类间方差与类内方差之比最大。感谢观看!感谢观看!