《2019-2020年高三数学上册 14.1《平面及其基本性质》教案沪教版.pdf》由会员分享,可在线阅读,更多相关《2019-2020年高三数学上册 14.1《平面及其基本性质》教案沪教版.pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019-20202019-2020 年高三数学上册年高三数学上册 14.1 14.1平面及其基本性质教案(平面及其基本性质教案(1 1)沪教版沪教版一、教学内容分析教学内容分析本节的重点是平面的概念、平面的画法,点、线、面的位置关系的集合语言表示法.集合语言是学生比较熟悉的内容,而点、线、面是学生刚刚接触不太熟悉的内容,用已知的知识来表示未知的内容,更有利于学生接受和掌握新知识,也让学生更清楚的明确点、线、面的关系.但要注意的是,这里仅是借用集合语言来表示点、线、面的关系,而并不完全等同于集合中的相应关系,如a=A 就是一个例子.本节的难点是平面的概念、平面的画法.“平面”没有具体的定义,它
2、的概念是现实中平面形象抽象的结果,所以,可以从学生之前学习的点、直线的概念入手,让学生理解平面的“平,没有厚度,在空间无限延伸”的特点.通过对平面概念的理解以及动手在纸上划出一个或几个平面的过程,初步认识平面、平面与平面之间的关系并体会立体几何的基本思想,从而培养学生的空间想象能力,为以后解决空间一些基本直线和平面之间的位置关系打下基础.二、教学目标设计二、教学目标设计理解平面的概念,能画出平面和用字母表示平面,掌握用集合符号表示点与直线、点与平面、直线与平面的位置关系;培养空间想象能力,提高学习数学的自觉性和兴趣.三、教学重点及难点三、教学重点及难点平面的概念、平面的画法,点、线、面的位置关
3、系的集合语言表示法.四、教学流程设计四、教学流程设计课堂小结并布置作业平面的概念平面的画法集合语言表示法运用与深化(例题解析、巩固练习)立几发展史引入五、教学过程设计五、教学过程设计一、立体几何发展史一、立体几何发展史立体几何在生活中无处不在;本章研究空间中的直线和平面,是处理空间问题、形成空间想象能力的基础.二、讲授新课二、讲授新课(一)平面(一)平面定义:平面是平的,没有厚度的,在空间无限延伸的图形.数学中的平面的概念是现实中平面形象抽象的结果.比如平静的湖面、桌面等.平面的表示方法:(1)用大写的英文字母表示:平面M,平面 N 等;(2)用小写的希腊字母表示:平面,平面等;(3)用平面上
4、的三个(或三个以上)点的字母表示:(如图 14-1)平面 ABCD 等.DCAB图图 14-114-1平面的直观图画法:MMM正视图垂直放置的平面 M水平放置的平面 M图图 14-214-2相交平面画法注意:看得见的线用实线,看不见的线用虚线.(二)空间点、线、面的位置关系的集合语言表示法(二)空间点、线、面的位置关系的集合语言表示法在空间,我们把点看作元素,直线和平面看作是由元素点所组成的集合,建立了如下点、线、面的集合语言表示法.点与线:点与线:QLA点 A 在直线 L 上:(直线 L 经过点 A);点 Q 不在直线 L 上:点与平面:点与平面:点 A 在平面内:(平面经过点 A);点 B
5、 不在平面内:;直线与平面:直线与平面:直线 L 在平面上:l直线 L 上所有的点都在平面上,即直线L 在平面上,或平面经过直线L,记作.直线 L 在平面外:l lA A当直线 L 与平面只有一个公共点A 时,称直线 L 与平面相交于点 A,记作;l当直线 L 与平面没有公共点时,称直线L 与平面平行,记作或.直线与直线:直线与直线:A Aba直线 a 与直线 b 相交于点 A,记作.平面与平面:平面与平面:当平面上所有的点都在平面上时,称平面与平面重合;当不同的两个平面与有公共点时,将它们的公共点的集合记为L,称平面与平面相交于 L,记作.当两个平面与没有公共点时,称平面与平面平行,记作或.
6、(三)例题解析(三)例题解析例例 1 1 观察下面图形,说明它们的摆放位置不同解:我们看到了这个几何体的前后两个面.说明说明培养学生的空间想象能力培养学生的空间想象能力.例例 2 2 正方体的各顶点如图所示,正方体的三个面所在平面,分别记作,试用适当的符号填空.(1)A1_,B1_(2)B1_,C1_(3)A1_,D1_(4)_ A1B1_ BB1(5)A1B1_,BB1_A1B1_解:(1),;(2),;(3),;(4),;(5),说明说明能够熟练运用集合符号来说明点、线、面间的位置关系.例例 3 3:根据下列符号表示的语句,说出有关点、线、面的关系,并画出图形.(1)A,B(2)l,m(3
7、)l(4)Pl,P,Ql,Q解:(1)点 A 在平面内,点 B 不在平面内;(2)直线 L 在平面上,直线 m 在平面外;Lm(3)平面交平面与直线L;(4)点 P 在直线 L 上,不在平面上;点 Q 在直线 L 上,也在平面上.PQ三、课堂小结三、课堂小结1.平面的定义;2.平面及相交平面的画法;3.集合语言在平面中的使用;四、课后作业四、课后作业练习 14.1(1)1五、教学设计说明本章呈现了几何研究的范围从平面扩展到空间时的基本方法.把几何研究的范围从平面扩展到空间后,增加了新的对象平面.空间几何学是平面几何学的推广,平面几何中研究点与点、点与直线、直线与直线三种位置关系;空间几何中则增
8、加了点与平面、直线与平面、平面与平面三中位置关系.本节的主要内容是让学生了解平面的概念,以及空间点、线、面的基本关系及其表示.对于学生而言,初中时已学过平面中点与点、点与直线、直线与直线三种位置关系.而这节课可以利用类比的方法从学生熟悉的知识引出学生还比较陌生的知识,把平面问题扩展到空间;利用生活中的熟悉的情景问题来说明空间中的点、线、面的基本关系,把生活与学习联系在了一起.本节课通过对平面概念,和点线面基本关系及其表示的学习,引导学生把平面知识扩展到空间,培养学生的空间想象能力!2019-20202019-2020 年高三数学上册年高三数学上册 14.1 14.1平面及其基本性质教案(平面及
9、其基本性质教案(2 2)沪教版沪教版一、教学内容分析教学内容分析本节的重点和难点是三个公理三个推论.三个公理和三个推论是立体几何的基础,公理 1确定直线在平面上;公理 2 明确两平面相交于一直线;公理 3 及三个推论给出了确定平面的条件.这些是后面学习空间直线与平面位置关系的基础.所以让学生透彻理解这些公理和性质,把现实中的具体空间问题抽象出来,初步认识直线与平面、平面与平面之间的关系并体会立体几何的基本思想,从而培养学生的空间想象能力,有利于学生更快更好的学习立体几何.二、教学目标设计二、教学目标设计理解平面的基本性质,能用三个公理三个推论解决简单的空间线面问题;了解一些简单的证明.培养空间
10、想象能力,提高学习数学的自觉性和兴趣.三、教学重点及难点三、教学重点及难点三个公理,三个推论.四、教学过程设计四、教学过程设计一、讲授新课一、讲授新课(一)公理(一)公理 1 1如果直线上有两个点在平面上,那么直线在平面上.(直线在平面上)用集合语言表述:Al,Bl,A,B l(二)公理(二)公理 2 2如果不同的两个平面、有一个公共点 A,那么、的交集是过点 A 的直线.(平面与平面相交)Al用集合语言表述:A l且Al(三)公理(三)公理 3 3 和三个推论和三个推论公理 3:不在同一直线上的三点确定一个平面.(确定平面)这里“确定”的含义是“有且仅有”BCA用集合语言表述:A,B,C 不
11、共线=A,B,C 确定一个平面推论 1:一条直线和直线外的一点确定一个平面.证明:BlAC设 A 是直线外的一点,在直线上任取两点B 和 C,由公理 3 可知 A,B 和 C 三点能确定平面.又因为点,所以由公理1 可知 B,C 所在直线,即平面是由直线和点A 确定的平面.用集合语言表述:推论 2:两条相交的直线确定一个平面.用集合语言表述:ab A a,b确定平面推论 3:两条平行的直线确定一个平面.用集合语言表述:(四)例题解析(四)例题解析例例 1 1 如图,正方体中,E,F 分别是的中点,问:直线EF 和 BC 是否相交?D1C1A1DB1EFC如果相交,交点在那个平面内?ABEB1C
12、1 E平面B1C平面B1C解:EF F B1B F 平面B1C又,则直线 EF 和 BC 共面;EF与BC共面 BC/B1C1 EF与BC相交EF B1C1 E设直线 EF 和 BC 相交于点 p,则 p 在直线 BC 上,即点 P 在平面 ABCD 上.说明说明利用公理 1 确定直线在平面内.例例 2 2 如图,若 a,b,c,ab P,求证:直线 C 必过点 P.aP b P PcP解:c c 结论结论三个平面两两相交得到三条交线,若其中两条交于一点,另一条必过此公共点.例例 3 3 空间三个点能确定几个平面?空间四个点能确定几个平面?解:三点共线有无数多个平面;三点不共线可以确定一个平面
13、.所以三点可以确定一个或无数个平面.四点共线有无数个平面;有三点共线可确定一个平面;任意三点不共线能确定 1 个或 3个平面.所以四点可以确定 1 个或 3 个或无数个平面.说明说明公理 3 的简单应用.例例 4 4 空间三条直线相交于一点,可以确定几个平面?空间四条直线相交于一点,可以确定几个平面?解:三条直线相交于一点可以确定1 个或 3 个平面;四条直线相交于一点可以确定1 个、4 个或 6 个平面.说明说明推论 2 的简单应用.例例 5 5 如图,AB/CD,AB E,CD F,求作 BC 与平面的交点.A AC CE EF FB BD D解:连接 EF 和 BC,交点即为所求 BC
14、与平面的交点.(公理 3 和公理 2)说明说明推论 3 的简单应用.三、课堂小结三、课堂小结1.公理 1:确定直线在平面内;2.公理 2:平面与平面相交于一直线;3.公理 3 和三个推论确定平面的条件;四、课后作业四、课后作业练习 14.1(1)2练习 14.1(2)1,2,3五、教学设计说明本章呈现了几何研究的范围从平面扩展到空间时的基本方法.把几何研究的范围从平面扩展到空间后,增加了新的对象平面.空间几何学是平面几何学的推广,平面几何中研究点与点、点与直线、直线与直线三种位置关系;空间几何中则增加了点与平面、直线与平面、平面与平面三中位置关系.本节的主要内容是让学生理解三个公理和三个推论,运用这些公理和推论进行一些简单的证明.公理是人们在长期的生活实践的观察和检验中发现的.可以联系生活中的情景来学习三个公理,从而帮助学生学习,加深他们对公理的理解.三个公理和三个推论是空间几何学习的基础,有了这个基础,才能进一步研究空间中点与面、线与面、面与面的位置关系和度量问题.