《《平行四边形的性质》教案.pdf》由会员分享,可在线阅读,更多相关《《平行四边形的性质》教案.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、平行四边形的性质教案平行四边形的性质教案平行四边形的性质教案课 题平行四边形的性质(1)授课人课 型新授课多媒体使用PPT 课件教学目标【知识目标】1、掌握平行四边形有关概念;2、在动手操作实践的过程中,探索并掌握平行四边形的性质.【能力目标】1、通过探索与证明平行四边形的性质,发展演绎推理的能力;2、在证明平行四边形的性质的过程中,体会将平行四边形问题为三角形问题的转化思想【情感态度与价值观】在进行探索的活动过程中发展合作交流的意识【数学核心素养目标】1、通过操作活动,在发现平行四边形的性质的过程中培养直观想象的数学素养;2、通过对性质的证明,进一步提升逻辑推理的数学核心素养教材分析重 点掌
2、握平行四边形的概念与性质难 点对平行四边形性质的探究与证明教学方法引导类比、鼓励操作、启发推理学法指导探索发现、猜想证明、迁移应用教学过程一、引入新课PPT 呈现:类比是伟大的引路人,转化是智慧的思想家几何学习,是一场充满挑战与惊喜的旅行,老师很荣幸今天能和在座的同学们继续我的平面几何之旅回顾我们学过的平面图形:直线、射线、线段 角 三角形?同学们推测一下,接着我们会研究那种平面图形?四边形我们就从生活中常见的一类特殊的四边形平行四边形研究起你能举出一些生活中常见的平行四边形实例吗?地砖、推拉门、活动衣架、窗格二、实践探究1平行四边形的相关概念平行四边形的定义:两组对边分别平行的四边形,叫做平
3、行四边形DCAB如图:学生活动:邀请学生指导老师画两组分别平行的线段,并上黑板协助老师画图,从而得到平行四边形平行四边形的符号表示:ABCD,读作“平行四边形ABCD”(注意表示时,四个顶点 A、B、C、D 的书写顺序只能按顺时针方向或逆时针方向)边、对边、邻边;角、对角、邻角对角线:平行四边形不相邻的两个顶点连成的线段叫做它的对角线 ABCD 的对角线有两条:AC、BD2.平行四边形是中心对称图形活动:利用平行四边形纸片探索平行四边形的性质活动方式:同桌或四人小组合作、讨论交流教具:画好平行四边形的彩纸、透明纸各一张、图钉一枚平行四边形是中心对称图形,两条对角线的交点是它的对称中心3.平行四
4、边形的性质性质 1:平行四边形的对边相等已知:如图,四边形 ABCD 是平行四边形四边形 ABCD 是平行四边形A=C,B=D求证:AB=CD,BC=DA证明:连接 AC四边形 ABCD 是平行四边形ABCD,BCDA(平行四边形的定义)1=2,3=4在ABC 与CDA 中:(ASA)AB=CD,BC=DA几何语言:四边形 ABCD 是平行四边形AB=CD,BC=DA性质 2:平行四边形的对角相等几何语言:四边形 ABCD 是平行四边形A=C,B=D三、应用迁移【例题探究,夯实基础】例:已知:如图,在ABCD 中,E,F 是对角线 AC 上的两点,并且 AE=CF.求证:证明:四边形 ABCD
5、 是平行四边形AB=CD(平行四边形的对边相等)ABCD(平行四边形的定义)BAE=DCF在 12 鈭咥 BE/与 12 鈭咰 DF/中:(SAS)BE=DF【例题变式,灵活思维】变式 1:已知:如图,在ABCD 中,E,F 是对角线 AC 上的两点,并且 AEDF.求证:.变式 2:已知:如图,在ABCD 中,E,F 是对角线 AC 上的两点,并且 BE 平分ABC,DF 平分ADC求证:.变式 1 图 变式 2 图【接龙练习,巩固迁移】如图,四边形 ABCD 是平行四边形,若A=130,则B=_,C=_,D=_;若 AB=4,AD=5,则 BC=_,CD=_.第 1 题图 第 2 题图2.
6、如图,在平面直角坐标系中,ABCD 的三个顶点为 A(0,0)、B(4,0)、D(1,2),则顶点 C 的坐标是_.3.小强用 30 米的铁丝围成一个平行四边形的场地(不计接口长度),其中一条边长是 10 米,则与这条边相邻的边的长度是_米4.如图,在 ABCD 中,若 BE 平分ABC,则 ED 如图,在 ABCD 中,AM 平分BAD,BM 平分ABC,AMB_.第 4 题图 第 5 题图【游戏设计,拓展提升】四位同学玩传球游戏,三位同学已经站好位置,要求以这四位同学所占位置为顶点,组成平行四边形,请问第四位同学应该站在哪里?解:如图,第四位同学可以站在 P、Q、M 这三个位置四、本课总结
7、知识:平行四边形的概念与性质探究方法与思想:类比探究,转化思想五、作业布置必做题:课本 P137 2、3、4 题选做题:将【游戏设计,拓展提升】部分的问题整理在好题本“分类讨论”这一问题中设计意图提醒并渗透“类比的方法、转化的思想”提醒学生本节课是几何探究课程本节课是 平行四边形这一章的章起始课,促使学生对平面图形的学习进行系统性的认识小学已经感知上认识了平行四边形,由学生主动举生活中平行四边形的实例,感受数学源于生活而服务于生活,同时逐渐调动学生主动思考,为接下来的探究热身突出学生课堂主体的地位,加深对平行四边形定义的认识突出重点:1.学生通过观察、动手操作,经历平行四边形性质的探索和发现过
8、程,发展合作交流的意识,提升探究能力;2.在动手操作额过程中,发现并验证了平行四边形是中心对称图形;3.促使学生发现平行四边形中有关元素之间的相等关系,获得平行四边形有关性质的猜想突破难点:1.学生探索猜想性质是合情推理,而规范证明则是演绎推理,通过规范的几何证明,提升学生的推理论证能力2.转化思想:将四边形问题转化为三角形问题来研究引导学生探索并展示多种证明方法2.激励学生分析、解决问题的热情,进一步提升推理论证的能力本例是对所学的平行四边形性质定理的简单应用.教学时让学生先独立思考,再组织学生进行交流.鼓励学生充分表达他们寻求证明思路的过程这两个问题是对例题条件进行变化,结论不变,以促进学
9、生对平行四边形性质的熟练掌握与灵活运用这组练习的设计,层层递进,由浅入深,可有效地开发各层次学生的潜能及上进心,实现分类推进的教学思想2.第 4 题引导学生发现平行四边形一条角平分线可以构造出等腰三角形;3.第 5 题引导学生发现平行四边形两个邻角的角平分线可以构造出直角三角形三角形(此问题根据实际授课情况,可删减)1.游戏情境,激发学生兴趣;2.此问题有三种情况,体现分类讨论的思想,促进学生思考问题的全面性;1.作业一部分是必做题,体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题,让“不同的人在数学上得到不同的发展”2.选做部分为了促进学生养成分类梳理数学问题的习惯