【高二数学知识点总结】高二数学《导数》知识点总结.docx

上传人:柒****a 文档编号:90719140 上传时间:2023-05-17 格式:DOCX 页数:3 大小:37.95KB
返回 下载 相关 举报
【高二数学知识点总结】高二数学《导数》知识点总结.docx_第1页
第1页 / 共3页
【高二数学知识点总结】高二数学《导数》知识点总结.docx_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《【高二数学知识点总结】高二数学《导数》知识点总结.docx》由会员分享,可在线阅读,更多相关《【高二数学知识点总结】高二数学《导数》知识点总结.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【高二数学知识点总结】高二数学导数知识点总结数知识点总结,希望对大家有所作用。1、导数的定义:在点处的导数记作.2.导数的几何物理意义:线在点处切线的斜率=f/(x0)表示过线=f(x)上P(x0,f(x0)切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。3.常见函数的导数公式:;。4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。(2)求极值的步骤:求导数;求方程的根;列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得

2、极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数最大值与最小值的步骤:求的根;把根与区间端点函数值比较,最大的为最大值,最小的是最小值。导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量x时,函数输出值的增量与自变量增量x的比值在x趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变

3、化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),xf(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导

4、函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量x,(x0+x)也在该邻域内时,相应地函数取得增量=f(x0+x)-f(x0);如果与x之比当x0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f(x0),也记作x=x0或d/dxx=x0总结是事后对某一阶段的工作或某项工作的完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析,为今后的工作提供帮总结是事后对某一阶段的

5、工作或某项工作的完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析,为今后的工作提供帮总结是事后对某一阶段的工作或某项工作的完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析,为今后的工作提供帮工作总结(JobSummaryWorkSummary),以年末总结、半年总结和季度总结最为常见和多用。就其内容而言,工作总结就是把一个时间段的工作总结是事后对某一阶段的工作或某项工作的完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析,为今后的工作提供帮会计是一个汉语词语,读音kuàijì,英文名称为Accounting。会计有两层意思,一是指会计工作,二是指会计工作人员。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁